Integral p-adic Hodge theory - announcement

被引:0
|
作者
Bhatt, B. [1 ]
Morrow, M. [2 ]
Scholze, P. [2 ]
机构
[1] Univ Michigan, Dept Math, 2074 East Hall,530 Church St, Ann Arbor, MI 48109 USA
[2] Univ Bonn, Math Inst, Endenicher Allee 60, D-53115 Bonn, Germany
关键词
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Given a proper, smooth (formal) scheme over the ring of integers of C-p, we prove that if the crystalline cohomology of its special fibre is torsion-free then the p-adic etale cohomology of its generic fibre is also torsion-free. In this announcement we sketch the proof, which relies on the construction of a new cohomology theory interpolating crystalline and etale cohomology. Further details and results will be presented in the full forthcoming article.
引用
收藏
页码:1601 / 1612
页数:12
相关论文
共 50 条
  • [1] Integral p-adic Hodge theory - announcement
    Bhatt, B.
    Morrow, M.
    Scholze, P.
    MATHEMATICAL RESEARCH LETTERS, 2015, 22 (06) : 1601 - 1612
  • [2] Integral p-adic Hodge theory
    Bhatt, Bhargav
    Morrow, Matthew
    Scholze, Peter
    PUBLICATIONS MATHEMATIQUES DE L IHES, 2018, 128 (01): : 219 - 397
  • [3] Topological Hochschild homology and integral p-adic Hodge theory
    Bhatt, Bhargav
    Morrow, Matthew
    Scholze, Peter
    PUBLICATIONS MATHEMATIQUES DE L IHES, 2019, 129 (01): : 199 - 310
  • [4] Integral p-adic Hodge theory of formal schemes in low ramification
    Min, Yu
    ALGEBRA & NUMBER THEORY, 2021, 15 (04) : 1043 - 1076
  • [5] Stringy Hodge numbers and p-adic Hodge theory
    Ito, T
    COMPOSITIO MATHEMATICA, 2004, 140 (06) : 1499 - 1517
  • [6] Breuil-Kisin modules and integral p-adic Hodge theory
    Gao, Hui
    Liu, Tong
    Ozeki, Yoshiyasu
    JOURNAL OF THE EUROPEAN MATHEMATICAL SOCIETY, 2023, 25 (10) : 3979 - 4032
  • [7] On some applications of integral p-adic Hodge theory to Galois representations
    Yamashita, Go
    Yasuda, Seidai
    JOURNAL OF NUMBER THEORY, 2015, 147 : 721 - 748
  • [8] Integral p-adic non-abelian Hodge theory for small representations
    Min, Yu
    Wang, Yupeng
    ADVANCES IN MATHEMATICS, 2024, 458
  • [9] Tensor products in p-adic hodge theory
    Totaro, B
    DUKE MATHEMATICAL JOURNAL, 1996, 83 (01) : 79 - 104
  • [10] Hodge theory of p-adic varieties: a survey
    Niziol, Wieslawa
    ANNALES POLONICI MATHEMATICI, 2021, 127 (1-2) : 63 - 86