ON THE RELATION BETWEEN POLYCONVEXITY AND RANK-ONE CONVEXITY IN NONLINEAR ELASTICITY

被引:18
|
作者
ROSAKIS, P [1 ]
SIMPSON, HC [1 ]
机构
[1] UNIV TENNESSEE,DEPT MATH,KNOXVILLE,TN 37996
关键词
D O I
10.1007/BF00040941
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
For elastic stored energy functions we examine some of the implications of polyconvexity and rank-one convexity, as well as the connection between the two conditions in the presence of certain additional restrictions.
引用
收藏
页码:113 / 137
页数:25
相关论文
共 50 条
  • [1] Rank-one convexity implies polyconvexity in isotropic planar incompressible elasticity
    Ghiba, Ionel-Dumitrel
    Martin, Robert J.
    Neff, Patrizio
    JOURNAL DE MATHEMATIQUES PURES ET APPLIQUEES, 2018, 116 : 88 - 104
  • [2] The role of perspective functions in convexity, polyconvexity, rank-one convexity and separate convexity
    Dacorogna, Bernard
    Marechal, Pierre
    JOURNAL OF CONVEX ANALYSIS, 2008, 15 (02) : 271 - 284
  • [3] Equivalence between rank-one convexity and polyconvexity for some classes of elastic materials
    Horta Dantas, Marcio Jose
    JOURNAL OF ELASTICITY, 2006, 82 (01) : 1 - 7
  • [4] Equivalence between Rank-One Convexity and Polyconvexity for Some Classes of Elastic Materials
    Márcio José Horta Dantas
    Journal of Elasticity, 2006, 82 : 1 - 7
  • [5] Equivalence between rank-one convexity and polyconvexity for isotropic sets of 2×2 (Part II)
    Cardaliaguet, Pierre
    Tahraoui, Rabah
    Nonlinear Analysis, Theory, Methods and Applications, 2002, 50 (08): : 1201 - 1239
  • [6] When Rank-One Convexity Meets Polyconvexity: An Algebraic Approach to Elastic Binodal
    Grabovsky, Yury
    Truskinovsky, Lev
    JOURNAL OF NONLINEAR SCIENCE, 2019, 29 (01) : 229 - 253
  • [7] When Rank-One Convexity Meets Polyconvexity: An Algebraic Approach to Elastic Binodal
    Yury Grabovsky
    Lev Truskinovsky
    Journal of Nonlinear Science, 2019, 29 : 229 - 253
  • [8] On the equivalence between rank-one convexity and polyconvexity for isotripic sets of R2x2
    Cardaliaguet, P
    Tahraoui, R
    COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE I-MATHEMATIQUE, 2000, 331 (11): : 851 - 856
  • [9] Equivalence between rank-one convexity and polyconvexity for isotropic sets of R2x2 (Part I)
    Cardaliaguet, P
    Tahraoui, R
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2002, 50 (08) : 1179 - 1199
  • [10] Polyconvexity equals rank-one convexity for connected isotropic sets in M2x2
    Conti, S
    De Lellis, C
    Müller, S
    Romeo, M
    COMPTES RENDUS MATHEMATIQUE, 2003, 337 (04) : 233 - 238