Strong uniform consistency of a nonparametric estimator of a conditional quantile for censored dependent data and functional regressors

被引:13
|
作者
Horrigue, Walid [1 ,2 ]
Said, Elias Ould [1 ,2 ]
机构
[1] Univ Lille Nord France, F-59000 Lille, France
[2] ULCO, LMPA, F-62228 Calais, France
关键词
Censored data; conditional distribution function; infinite dimension; Kaplan-Meier; estimator; kernel estimator; small-ball probability;
D O I
10.1515/ROSE.2011.008
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
Let. (T, C, X) be a vector of random variables (rvs) where T, C and X are the interest variable, a right censoring rv and a covariate, respectively. In this paper, we study the kernel conditional quantile estimation in the dependent case and when the covariable takes values in an infinite-dimension space. An estimator of the conditional quantile is given and, under some regularity conditions, among which the small-ball probability for the covariate, its uniform strong convergence with rates is established.
引用
收藏
页码:131 / 156
页数:26
相关论文
共 50 条