BOCHNER-RIESZ MEANS OF FUNCTIONS IN WEAK-L(P)

被引:9
|
作者
COLZANI, L [1 ]
TRAVAGLINI, G [1 ]
VIGNATI, M [1 ]
机构
[1] UNIV PALERMO,DIPARTIMENTO MATEMAT & APPLICAZ,I-90123 PALERMO,ITALY
来源
MONATSHEFTE FUR MATHEMATIK | 1993年 / 115卷 / 1-2期
关键词
D O I
10.1007/BF01311209
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The Bochner-Riesz means of order delta greater-than-or-equal-to 0 for suitable test functions on R(N) are defined via the Fourier transform by (S(R)(delta)f)(xi) = (1 - \xi\2/R2)+(delta)f(xi). We show that the means of the critical index delta = N/P - N + 1/2, 1 < p < 2N/N + 1, do not map L(p,infinity)(R(N)) into L(p,infinity) (R(N)), but they map radial functions of L(p,infinity) (R(N)) into L(p,infinity) (R(N)). Moreover, if f is radial and in the L(p,infinity) (R(N)) closure of test functions, S(R)(delta)f (x) converges, as R --> + infinity, to f(x) in norm and for almost every x in R(N). We also observe that the means of the function absolute value of x-N/p, which belongs to L(p,infinity) (R(N)) but not to the closure of test functions, converge for no x.
引用
收藏
页码:35 / 45
页数:11
相关论文
共 50 条