ON RECOGNITION OF THE PROJECTIVE SPECIAL LINEAR GROUPS OVER BINARY FIELD

被引:0
|
作者
Grechkoseeva, M. A. [1 ]
Lucido, M. S. [2 ]
Mazurov, V. D. [3 ]
Moghaddamfar, A. R. [4 ]
Vasil'ev, A. V. [3 ]
机构
[1] Novosibirsk State Univ, Pirogova St 2, Novosibirsk 630090, Russia
[2] Univ Udine, Udine, Italy
[3] Sobolev Inst Math, Novosibirsk 630090, Russia
[4] KN Toosi Univ Technol, Dept Math, Fac Sci, Tehran, Iran
关键词
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The spectrum omega(G) of a finite group G is the set of element orders of G. Let L be the projective special linear group L-n(2) with n >= 3. First, for all n >= 3 we establish that every finite group G with omega(G) = omega(L) has a unique non-abelian composition factor and this factor is isomorphic to L. Second, for some special series of integers n we prove that L is recognizable by spectrum, i. e. every finite group G with omega(G) = omega(L) is isomorphic to L.
引用
收藏
页码:253 / 263
页数:11
相关论文
共 50 条