EQUIVALENCE OF MATRICES OVER A POLYNOMIAL DOMAIN

被引:0
|
作者
PARKER, WV
RUTLEDGE, WA
机构
关键词
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
引用
收藏
页码:56 / 56
页数:1
相关论文
共 50 条
  • [1] On the Equivalence of Polynomial Matrices Over a Field
    Prokip, Volodymyr
    UKRAINIAN MATHEMATICAL JOURNAL, 2024, 76 (05) : 833 - 842
  • [2] Unimodular Equivalence of Polynomial Matrices
    Fuhrmann, P. A.
    Helmke, U.
    THREE DECADES OF PROGRESS IN CONTROL SCIENCES, 2010, : 169 - 185
  • [3] On the equivalence of multivariate polynomial matrices
    Dongmei Li
    Jinwang Liu
    Licui Zheng
    Multidimensional Systems and Signal Processing, 2017, 28 : 225 - 235
  • [4] On the equivalence of multivariate polynomial matrices
    Li, Dongmei
    Liu, Jinwang
    Zheng, Licui
    MULTIDIMENSIONAL SYSTEMS AND SIGNAL PROCESSING, 2017, 28 (01) : 225 - 235
  • [5] On the Normal Form with Respect to the Semiscalar Equivalence of Polynomial Matrices Over the Field
    Prokip V.M.
    Journal of Mathematical Sciences, 2013, 194 (2) : 149 - 155
  • [6] On the equivalence and factorization of multivariate polynomial matrices
    Lin, Zhiping
    Boudellioua, M. S.
    Xu, Li
    2006 IEEE INTERNATIONAL SYMPOSIUM ON CIRCUITS AND SYSTEMS, VOLS 1-11, PROCEEDINGS, 2006, : 4911 - +
  • [7] Testing Polynomial Equivalence by Scaling Matrices
    Blaeser, Markus
    Rao, B. V. Raghavendra
    Sarma, Jayalal
    FUNDAMENTALS OF COMPUTATION THEORY, FCT 2017, 2017, 10472 : 111 - 122
  • [8] A NOTE ON SEMISCALAR EQUIVALENCE OF POLYNOMIAL MATRICES
    Prokip, Volodymyr M.
    ELECTRONIC JOURNAL OF LINEAR ALGEBRA, 2022, 38 : 195 - 203
  • [9] On a new notion of equivalence for polynomial matrices
    Karampetakis, NP
    SYSTEM STRUCTURE AND CONTROL 2001, VOLS 1 AND 2, 2001, : 219 - 224
  • [10] Diagonalization of matrices over the domain of principal ideals with minimal polynomial m(λ) = (λ - α)(λ - β), α ≠ β
    Prokip V.M.
    Journal of Mathematical Sciences, 2011, 174 (4) : 481 - 485