MODIFIED BOUNDARY ELEMENT METHOD FOR THE SOLUTION OF CONNECTED PROBLEMS OF MATHEMATICAL PHYSICS

被引:0
|
作者
Fedotov, V. P. [1 ]
机构
[1] RAS, Ural Branch, Inst Engn Sci, Lab Appl Mech, 34 Komsomolskaya St, Ekaterinburg 620049, Russia
关键词
phase transition; open systems; stresses; strains; deformation resource; integral equation; influence function; elliptic and hyperbolic problems;
D O I
10.14498/vsgtu1148
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
The modified boundary element method for physico-mathematical modeling of the multifactorial processes is offered for discussion. Physical modeling based on the Onsager's theorem about the relationship between generalized forces and fluxes where we assume the coefficients of reciprocity are nonlinear. The approach is illustrated by the example of the strain diagram. Mathematical modeling is based on a modification of the BEM where all incorrect procedures of the numerical differentiation and integration were replaced by preliminary analytical calculations.
引用
收藏
页码:172 / 180
页数:9
相关论文
共 50 条
  • [1] On the solution of boundary problems in mathematical physics
    Neufeld, J
    PHILOSOPHICAL MAGAZINE, 1934, 18 (120): : 624 - 624
  • [2] On the solution of boundary problems in mathematical physics
    Neufeld, J
    PHILOSOPHICAL MAGAZINE, 1934, 17 (115): : 987 - 992
  • [3] SOLUTION OF BOUNDARY-VALUE PROBLEMS OF MATHEMATICAL PHYSICS BY STRUCTURAL METHOD
    MANKO, GP
    SENCHUKOV, VF
    DOPOVIDI AKADEMII NAUK UKRAINSKOI RSR SERIYA A-FIZIKO-MATEMATICHNI TA TECHNICHNI NAUKI, 1975, (05): : 405 - 408
  • [4] APPLICATION OF THE MODIFIED BOUNDARY ELEMENT METHOD FOR THE SOLUTION OF PARABOLIC PROBLEMS
    Fedotov, V. P.
    Nefedova, O. A.
    VESTNIK SAMARSKOGO GOSUDARSTVENNOGO TEKHNICHESKOGO UNIVERSITETA-SERIYA-FIZIKO-MATEMATICHESKIYE NAUKI, 2011, (04): : 93 - 101
  • [5] AUTOMATION OF SOLUTION FOR MATHEMATICAL PHYSICS BOUNDARY-VALUE PROBLEMS BY NET METHOD
    KARPOV, VV
    DOPOVIDI AKADEMII NAUK UKRAINSKOI RSR SERIYA A-FIZIKO-MATEMATICHNI TA TECHNICHNI NAUKI, 1978, (11): : 1017 - 1020
  • [6] Barycentric Method for Boundary Value Problems of Mathematical Physics
    Ilyinskii, A. S.
    Polyanskii, I. S.
    DIFFERENTIAL EQUATIONS, 2022, 58 (06) : 834 - 846
  • [7] Barycentric Method for Boundary Value Problems of Mathematical Physics
    A. S. Ilyinskii
    I. S. Polyanskii
    Differential Equations, 2022, 58 : 834 - 846
  • [8] THE MATHEMATICAL STATEMENT AND SOLUTION OF SPATIAL BOUNDARY VALUE PROBLEMS BY MEANS OF SPECTRAL ELEMENT METHOD
    Bubenchikov, A. M.
    Poponin, V. S.
    Melnikova, V. N.
    VESTNIK TOMSKOGO GOSUDARSTVENNOGO UNIVERSITETA-MATEMATIKA I MEKHANIKA-TOMSK STATE UNIVERSITY JOURNAL OF MATHEMATICS AND MECHANICS, 2008, (04): : 70 - +
  • [9] APPROXIMATE METHOD FOR SOLUTION OF NONSTATIONARY PROBLEMS OF MATHEMATICAL PHYSICS
    GLUSHCHENKO, AA
    DOPOVIDI AKADEMII NAUK UKRAINSKOI RSR SERIYA A-FIZIKO-MATEMATICHNI TA TECHNICHNI NAUKI, 1975, (06): : 490 - 493
  • [10] The solution of elastodynamic problems using modified radial integration boundary element method (MRIBEM)
    Zonoubi, K.
    Movahedian, B.
    Azhari, M.
    Engineering Analysis with Boundary Elements, 2022, 144 : 482 - 491