Sensitivity analysis in functional principal component analysis

被引:0
|
作者
Yoshihiro Yamanishi
Yutaka Tanaka
机构
[1] Kyoto University,Bioinformatics Center, Institute for Chemical Research
[2] Okayama University,Department of Environmental and Mathematical Sciences
来源
Computational Statistics | 2005年 / 20卷
关键词
Functional data; Principal component analysis; Statistical diagnostics; Influence function;
D O I
暂无
中图分类号
学科分类号
摘要
In the present paper empirical influence functions (EIFs) are derived for eigenvalues and eigenfunctions in functional principal component analysis in both cases where the smoothing parameter is fixed and unfixed. Based on the derived influence functions a sensitivity analysis procedure is proposed for detecting jointly as well as singly influential observations. A numerical example is given to show the usefulness of the proposed procedure. In dealing with the influence on the eigenfunctions two different kinds of influence statistics are introduced. One is based on the EIF for the coefficient vectors of the basis function expansion, and the other is based on the sampled vectors of the functional EIF. Under a certain condition it can be proved both kinds of statistics provide essentially equivalent results.
引用
收藏
页码:311 / 326
页数:15
相关论文
共 50 条
  • [31] Computational considerations in functional principal component analysis
    Ocana, Francisco A.
    Aguilera, Ana M.
    Escabias, Manuel
    COMPUTATIONAL STATISTICS, 2007, 22 (03) : 449 - 465
  • [32] Sparse multivariate functional principal component analysis
    Song, Jun
    Kim, Kyongwon
    STAT, 2022, 11 (01):
  • [33] Functional principal component analysis of fMRI data
    Viviani, R
    Grön, G
    Spitzer, M
    HUMAN BRAIN MAPPING, 2005, 24 (02) : 109 - 129
  • [34] Robust principal component analysis for functional data
    N. Locantore
    J. S. Marron
    D. G. Simpson
    N. Tripoli
    J. T. Zhang
    K. L. Cohen
    Graciela Boente
    Ricardo Fraiman
    Babette Brumback
    Christophe Croux
    Jianqing Fan
    Alois Kneip
    John I. Marden
    Daniel Peña
    Javier Prieto
    Jim O. Ramsay
    Mariano J. Valderrama
    Ana M. Aguilera
    N. Locantore
    J. S. Marron
    D. G. Simpson
    N. Tripoli
    J. T. Zhang
    K. L. Cohen
    Test, 1999, 8 (1) : 1 - 73
  • [35] Functional classwise principal component analysis: a classification framework for functional data analysis
    Chatterjee, Avishek
    Mazumder, Satyaki
    Das, Koel
    DATA MINING AND KNOWLEDGE DISCOVERY, 2023, 37 (02) : 552 - 594
  • [36] Functional classwise principal component analysis: a classification framework for functional data analysis
    Avishek Chatterjee
    Satyaki Mazumder
    Koel Das
    Data Mining and Knowledge Discovery, 2023, 37 : 552 - 594
  • [37] SENSITIVITY ANALYSIS AND PRINCIPAL COMPONENT ANALYSIS IN FREE-ENERGY CALCULATIONS
    WONG, CF
    RABITZ, H
    JOURNAL OF PHYSICAL CHEMISTRY, 1991, 95 (24): : 9628 - 9630
  • [38] Sensitivity coefficient in principal component analysis: Robust case
    Cheikh, Malika
    Ibazizen, Mohamed
    COMMUNICATIONS IN STATISTICS-SIMULATION AND COMPUTATION, 2008, 37 (08) : 1622 - 1630
  • [39] Functional outlier detection with robust functional principal component analysis
    Pallavi Sawant
    Nedret Billor
    Hyejin Shin
    Computational Statistics, 2012, 27 : 83 - 102
  • [40] Functional outlier detection with robust functional principal component analysis
    Sawant, Pallavi
    Billor, Nedret
    Shin, Hyejin
    COMPUTATIONAL STATISTICS, 2012, 27 (01) : 83 - 102