The underwater light field in the Bellingshausen and Amundsen Seas (Antarctica)

被引:0
|
作者
Noga Stambler
Charlotte Lovengreen
Max M. Tilzer
机构
[1] Alfred Wegener Institute for Polar and Marine Research Columbusstrasse,Instituto de Fisica
[2] Universidad Austral de Chile,undefined
来源
Hydrobiologia | 1997年 / 344卷
关键词
underwater light field; spectral water transparency; UV-A; chlorophyll absorption; natural fluorescence; Antarctica;
D O I
暂无
中图分类号
学科分类号
摘要
The underwater light field in the Bellingshausen andAdmundsen Seas was characterised using data collectedduring the R/V Polarstern cruise ANT XI/3, from12.1.94 to 27.3.94. The euphotic zone varied from 24to 100 m depth. Spectral diffuse vertical attenuationcoefficients (Kd(λ))were determined for 12narrow wavebands as well as for photosyntheticallyavailable radiation (PAR, 400–700 nm): Kd(490)ranged from 0.03 to 0.26 m™1; Kd(550) from0.04 to 0.17 m™1; Kd(683) from 0.04 to0.17 m™1; and Kd(PAR) varied from 0.02 to0.25 m™1. Kd(λ) for wavelengths centred at412 nm, 443 nm, 465 nm, 490 nm, 510 nm, 520 nm and550 nm were significantly correlated with chlorophyllconcentration (ranging from 0.1 to 6 mg m™3). Thevertical attenuation coefficients for 340 nm and380 nm ranged from 0.10 to 0.69 m™1 and from 0.05to 0.34 m™1, respectively, and were also highlycorrelated with chlorophyll concentrations. These Kd values indicate that the 1% penetration depthmay reach maxima of 46 m and 92 m for 340 nm and380 nm, respectively. The spectral radiancereflectances (Rr(λ)) for 443 nm, 510 nm and 550 nmwere less than 0.01 sr™1. Rr(λ) for 665 nm and683 nm increased with depth up to 0.2 sr™1 because ofchlorophyll fluorescence. Using a model that predicts downwardirradiances by taking into account the attenuation bywater and absorption by chlorophyll, we show thatchlorophyll fluorescence has a significant influenceon the red downward irradiance (Ed (633, 665, 683))in deeper layers. The ability of the phytoplanktonpopulation to influence the light environment byautofluorescence and absorption processes depends onthe light conditions and on the photoacclimation ofthe cells, represented by the in vivo crosssection absorption coefficient of chlorophyll (a*). Theobtained mean chlorophyll-specific light attenuationcoefficients of phytoplankton in situ (kd) are higherthan the in vivo absorption coefficient of chlorophyll,more than to be excepted from the scattering. a*(λ), m2 mg chl™1, decreased due topackaging effect with increasing chlorophyllconcentrations.
引用
收藏
页码:41 / 56
页数:15
相关论文
共 50 条
  • [21] The characteristic variability and connection to the underlying synoptic activity of the Amundsen-Bellingshausen Seas Low
    Fogt, Ryan L.
    Wovrosh, Alex J.
    Langen, Ryan A.
    Simmonds, Ian
    JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES, 2012, 117
  • [22] CRYSTAL-STRUCTURE, STABLE ISOTOPES (DELTA-O-18), AND DEVELOPMENT OF SEA-ICE IN THE ROSS, AMUNDSEN, AND BELLINGSHAUSEN SEAS, ANTARCTICA
    JEFFRIES, MO
    SHAW, RA
    MORRIS, K
    VEAZEY, AL
    KROUSE, HR
    JOURNAL OF GEOPHYSICAL RESEARCH-OCEANS, 1994, 99 (C1) : 985 - 995
  • [23] Influence of hydrography on phytoplankton distribution in the Amundsen and Ross Seas, Antarctica
    Fragoso, Glaucia M.
    Smith, Walker O., Jr.
    JOURNAL OF MARINE SYSTEMS, 2012, 89 (01) : 19 - 29
  • [24] Roughness variability of sea ice and snow cover thickness profiles in the Rose, Amundsen, and Bellingshausen Seas
    Adolphs, U
    JOURNAL OF GEOPHYSICAL RESEARCH-OCEANS, 1999, 104 (C6) : 13577 - 13591
  • [25] The role of Amundsen–Bellingshausen Sea anticyclonic circulation in forcing marine air intrusions into West Antarctica
    B. Daniel Emanuelsson
    Nancy A. N. Bertler
    Peter D. Neff
    James A. Renwick
    Bradley R. Markle
    W. Troy Baisden
    Elizabeth D. Keller
    Climate Dynamics, 2018, 51 : 3579 - 3596
  • [26] Pycnogonida from the Bellingshausen and Amundsen seas: taxonomy and biodiversity (vol 38, pg 413, 2015)
    Munilla, Tomas
    Soler-Membrives, Anna
    POLAR BIOLOGY, 2015, 38 (03) : 431 - 431
  • [27] Amundsen and Bellingshausen Seas simulation with optimized ocean, sea ice, and thermodynamic ice shelf model parameters
    Nakayama, Y.
    Menemenlis, D.
    Schodlok, M.
    Rignot, E.
    JOURNAL OF GEOPHYSICAL RESEARCH-OCEANS, 2017, 122 (08) : 6180 - 6195
  • [28] Ocean heat flux under Antarctic sea ice in the Bellingshausen and Amundsen Seas: two case studies
    Ackley, Stephen F.
    Xie, Hongjie
    Tichenor, Elizabeth A.
    ANNALS OF GLACIOLOGY, 2015, 56 (69) : 200 - 210
  • [29] The role of Amundsen-Bellingshausen Sea anticyclonic circulation in forcing marine air intrusions into West Antarctica
    Emanuelsson, B. Daniel
    Bertler, Nancy A. N.
    Neff, Peter D.
    Renwick, James A.
    Markle, Bradley R.
    Baisden, W. Troy
    Keller, Elizabeth D.
    CLIMATE DYNAMICS, 2018, 51 (9-10) : 3579 - 3596
  • [30] Dinoflagellate cysts from sediment traps deployed in the Bellingshausen, Weddell and Scotia seas, Antarctica
    Harland, R
    Pudsey, CJ
    MARINE MICROPALEONTOLOGY, 1999, 37 (02) : 77 - 99