Point process-based Monte Carlo estimation

被引:0
|
作者
Clément Walter
机构
[1] CEA,Laboratoire de Probabilités et Modèles Aléatoires
[2] DAM,undefined
[3] DIF,undefined
[4] Université Paris Diderot,undefined
来源
Statistics and Computing | 2017年 / 27卷
关键词
Nested sampling; Central limit theorem ; Heavy tails; Rare event simulation; Last particle algorithm;
D O I
暂无
中图分类号
学科分类号
摘要
This paper addresses the issue of estimating the expectation of a real-valued random variable of the form X=g(U)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$X = g(\mathbf {U})$$\end{document} where g is a deterministic function and U\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbf {U}$$\end{document} can be a random finite- or infinite-dimensional vector. Using recent results on rare event simulation, we propose a unified framework for dealing with both probability and mean estimation for such random variables, i.e. linking algorithms such as Tootsie Pop Algorithm or Last Particle Algorithm with nested sampling. Especially, it extends nested sampling as follows: first the random variable X does not need to be bounded any more: it gives the principle of an ideal estimator with an infinite number of terms that is unbiased and always better than a classical Monte Carlo estimator—in particular it has a finite variance as soon as there exists k∈R>1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$k \in \mathbb {R}> 1$$\end{document} such that EXk<∞\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\text {E}}\left[ X^k \right] < \infty $$\end{document}. Moreover we address the issue of nested sampling termination and show that a random truncation of the sum can preserve unbiasedness while increasing the variance only by a factor up to 2 compared to the ideal case. We also build an unbiased estimator with fixed computational budget which supports a Central Limit Theorem and discuss parallel implementation of nested sampling, which can dramatically reduce its running time. Finally we extensively study the case where X is heavy-tailed.
引用
收藏
页码:219 / 236
页数:17
相关论文
共 50 条
  • [21] Quantifying the Uncertainty in Model Parameters Using Gaussian Process-Based Markov Chain Monte Carlo: An Application to Cardiac Electrophysiological Models
    Dhamala, Jwala
    Sapp, John L.
    Horacek, Milan
    Wang, Linwei
    INFORMATION PROCESSING IN MEDICAL IMAGING (IPMI 2017), 2017, 10265 : 223 - 235
  • [22] Markov chain Monte Carlo estimation of the law of the mean of a Dirichlet process
    Guglielmi, A
    Tweedie, RL
    BERNOULLI, 2001, 7 (04) : 573 - 592
  • [23] Process-Based Asynchronous Progress Model for MPI Point-to-Point Communication
    Si, Min
    Balaji, Pavan
    2017 19TH IEEE INTERNATIONAL CONFERENCE ON HIGH PERFORMANCE COMPUTING AND COMMUNICATIONS (HPCC) / 2017 15TH IEEE INTERNATIONAL CONFERENCE ON SMART CITY (SMARTCITY) / 2017 3RD IEEE INTERNATIONAL CONFERENCE ON DATA SCIENCE AND SYSTEMS (DSS), 2017, : 206 - 214
  • [24] Estimation of k-Factor GIGARCH Process: A Monte Carlo Study
    Diongue, Abdou Ka
    Guegan, Dominique
    COMMUNICATIONS IN STATISTICS-SIMULATION AND COMPUTATION, 2008, 37 (10) : 2037 - 2049
  • [25] On the Monte-Carlo estimation of the distribution function of a functional of the Wiener process
    Kharlamov, IV
    PROBABILISTIC METHODS IN DISCRETE MATHEMATICS, 1997, : 279 - 284
  • [26] Mapping solute deep percolation fluxes at regional scale by integrating a process-based vadose zone model in a Monte Carlo approach
    Coppola, A.
    Dragonetti, G.
    Comegna, A.
    Zdruli, P.
    Lamaddalena, N.
    Pace, S.
    De Simone, L.
    SOIL SCIENCE AND PLANT NUTRITION, 2014, 60 (01) : 71 - 91
  • [27] Monte Carlo point process estimation of electromyographic envelopes from motor cortical spikes for brain-machine interfaces
    Liao, Yuxi
    She, Xiwei
    Wang, Yiwen
    Zhang, Shaomin
    Zhang, Qiaosheng
    Zheng, Xiaoxiang
    Principe, Jose C.
    JOURNAL OF NEURAL ENGINEERING, 2015, 12 (06)
  • [28] Monte Carlo based model of photodynamic therapy process
    Hu, XH
    Lu, JQ
    Allison, RR
    Downie, GH
    Cuenca, RE
    Sibata, CH
    MEDICAL PHYSICS, 2003, 30 (06) : 1513 - 1513
  • [29] Monte Carlo Estimation of CoVaR
    Huang, Weihuan
    Lin, Nifei
    Hong, Jeff
    OPERATIONS RESEARCH, 2024, : 2337 - 2357
  • [30] Monte Carlo Based Toy Model for Fission Process
    Kurniadi, R.
    Waris, A.
    Viridi, S.
    4TH INTERNATIONAL CONFERENCE ON ADVANCES IN NUCLEAR SCIENCE AND ENGINEERING (ICANSE 2013), 2014, 1615 : 133 - 136