Detection Performance of Circulating MicroRNA-210 for Renal Cell Carcinoma: a Meta-Analysis

被引:8
|
作者
Chen, Yan [1 ]
Wang, Xiaoyan [2 ]
Zhu, Xuxiao [1 ]
Shao, Shengwen [3 ]
机构
[1] Huzhou Univ, Sch Med & Nursing Sci, Dept Nursing, Huzhou, Peoples R China
[2] Huzhou Univ, Dept Clin Lab Diagnost, Huzhou, Peoples R China
[3] Huzhou Univ, Inst Microbiol & Immunol, Huzhou 313000, Peoples R China
关键词
miR-210; renal cell carcinoma; diagnosis; microRNA; SERUM MIR-210; PROLIFERATION; BIOMARKER; INVASION; CANCER; TOOL;
D O I
10.7754/Clin.Lab.2017.171103
中图分类号
R446 [实验室诊断]; R-33 [实验医学、医学实验];
学科分类号
1001 ;
摘要
Background: Renal cell carcinoma (RCC) is the most common neoplasm of the adult kidney. miR-210 was a known oncogene with tumor-promoting effects in many types of cancer. This meta-analysis aimed to evaluate the potential diagnostic value of circulating miR-210. Methods: Relevant literature was collected from PubMed and Embase. Sensitivity, specificity, and diagnostic odds ratio (DOR) for miR-210 in the diagnosis of RCC were pooled using random effects models. Summary receiver operating characteristic (SROC) curve analysis and the area under the curve (AUC) were used to estimate the overall test performance. Results: This meta-analysis included seven studies with a total of 570 RCC patients and 415 healthy controls. For miR-210, the pooled sensitivity, specificity, and DOR to predict RCC patients were 0.74 (95% confidence interval [CI]: 0.70 - 0.77), 0.76 (95% CI: 0.71 - 0.80) and 8.81 (95% CI: 5.31 - 14.57), respectively. In addition, the AUC of miR-210 for the diagnosis of RCC is 0.81. Conclusions: MiR-210 might be a potential novel biomarker in the diagnosis of renal cell carcinoma.
引用
收藏
页码:569 / 576
页数:8
相关论文
共 50 条
  • [31] MICRORNA-210 ENHANCES TUMOR ANGIOGENESIS BY TARGETING FGFRL1 IN HEPATOCELLULAR CARCINOMA
    Xia, T.
    Yang, Yun
    Li, G.
    Zhang, J.
    Yang, Yuan
    Wei, Y.
    Lan, K.
    Zhou, W.
    JOURNAL OF HEPATOLOGY, 2015, 62 : S394 - S394
  • [32] Potential value of circulating microRNA-126 and microRNA-210 as biomarkers for type 2 diabetes with coronary artery disease
    Amr, K. S.
    Abdelmawgoud, H.
    Ali, Z. Y.
    Shehata, S.
    Raslan, H. M.
    BRITISH JOURNAL OF BIOMEDICAL SCIENCE, 2018, 75 (02) : 82 - 87
  • [33] Diagnostic Accuracy of MRI for Detection of Papillary Renal Cell Carcinoma: A Systematic Review and Meta-Analysis
    Chiarello, Matthew A.
    Mali, Rahul D.
    Kang, Stella K.
    AMERICAN JOURNAL OF ROENTGENOLOGY, 2018, 211 (04) : 812 - 821
  • [34] Diagnostic performance of circulating cell-free DNA for hepatocellular carcinoma: a systematic review and meta-analysis
    Zhang, Jinmei
    Yuan, Yuan
    Gao, Shuxia
    Zhao, Xue
    Li, Hong
    BIOMARKERS IN MEDICINE, 2021, 15 (03) : 219 - 239
  • [35] Editorial Comment: Dietary and circulating vitamin D and risk of renal cell carcinoma: a meta-analysis of observational studies
    Gregorio, Bianca Martins
    INTERNATIONAL BRAZ J UROL, 2021, 47 (04): : 745 - 746
  • [36] Meta-analysis of the diagnostic performance of 18F-FDG pet in renal cell carcinoma
    De Llano, S. R. Martinez
    Delgado-Bolton, R. C.
    Jimenez-Vicioso, A.
    Perez-Castejon, M. J.
    Delgado, J. L. Carreras
    Ramos, E.
    Rotger, A.
    Jimenez, F.
    Alonso, J. C.
    Bittini, A.
    Dominguez, P.
    Almoguera, A.
    Perez-Vazquez, J. M.
    REVISTA ESPANOLA DE MEDICINA NUCLEAR, 2007, 26 (01): : 19 - 29
  • [37] Cholangiocarcinoma therapy with nanoparticles that combine downregulation of MicroRNA-210 with inhibition of cancer cell invasiveness
    Xie, Ying
    Wang, Yazhe
    Li, Jing
    Hang, Yu
    Jaramillo, Lee
    Wehrkamp, Cody J.
    Phillippi, Mary Anne
    Mohr, Ashley M.
    Chen, Yi
    Talmon, Geoffrey A.
    Mott, Justin L.
    Oupicky, David
    THERANOSTICS, 2018, 8 (16): : 4305 - 4320
  • [38] ASSOCITION OF MICRORNA-210 AND EPHRIN A3 EXPRESSION WITH RENAL ISCHEMIA/REPERFUSION INJURY IN MICE
    Cui Suping
    Deng Jun
    Ruan Qiongfang
    Fu Bing
    Lou Yuanlei
    Xie An
    Wang Yang
    IFPT'6: PROGRESS ON POST-GENOME TECHNOLOGIES, PROCEEDINGS, 2009, : 204 - 206
  • [39] Diagnostic accuracy of deep learning in detection and prognostication of renal cell carcinoma: a systematic review and meta-analysis
    Chandramohan, Deepak
    Garapati, Hari Naga
    Nangia, Udit
    Simhadri, Prathap K.
    Lapsiwala, Boney
    Jena, Nihar K.
    Singh, Prabhat
    FRONTIERS IN MEDICINE, 2024, 11
  • [40] Metabolic syndrome and increased susceptibility to renal cell carcinoma - a meta-analysis
    Zhou, Yanyu
    Chen, Yujun
    Yang, Heng
    Xu, Zhiqi
    Zhuang, Jinbiao
    Bian, Qitao
    Wang, Gongxian
    BMC NEPHROLOGY, 2025, 26 (01)