Hybrid kinematic model applied to the under-actuated robotic hand prosthesis ProMain-I and experimental evaluation

被引:0
|
作者
Ramirez, J. L. [1 ]
Rubiano, A. [1 ,3 ,4 ]
Jouandeau, N. [2 ]
El Korso, M. N. [1 ]
Gallimard, L. [1 ]
Polit, O. [1 ]
机构
[1] Univ Paris Ouest Nanterre Def, LEME, 50 Rue Sevres, F-92410 Ville Davray, France
[2] Univ Paris 08, LIASD, F-93526 St Denis, France
[3] Univ Paris Ouest Nanterre Def, F-92410 Ville Davray, France
[4] Univ Mil Nueva Granada, Bogota, Colombia
关键词
GEOMETRIC DESIGN; MANIPULATORS; SYNERGIES;
D O I
暂无
中图分类号
TP24 [机器人技术];
学科分类号
080202 ; 1405 ;
摘要
Upon the appearance of nylons, silicon, tendons, smart and soft materials, wearable robotics is going closer to the human body, leading robotics and biomechanics to provide us new physical rehabilitations and improvements. In the area that concerns soft robotic prosthesis, the main challenge is the design of well sized mechatronic limbs and smart controllers that should help people to achieve desired movements. As a consequence, we present a hybrid model that allows different ways of representing hand poses, according to special interactions that arise from soft robotics chains. Our hybrid model uses the positions of finger's parts computed with the Denavit-Hartenberg (DH) method mixed with the quaternions representation to avoid singularities and to reduce the number of DH parameters. Kinematic and dynamic of finger motions are evaluated using an experimental setup with mechanical parts produced by 3D printing and different actuators. Finally, experimental results are compared with the theoretical values and demonstrate the accuracy of our model.
引用
收藏
页码:301 / 306
页数:6
相关论文
empty
未找到相关数据