Notes on domination in fuzzy graphs

被引:25
|
作者
Manjusha, O. T. [1 ]
Sunitha, M. S. [2 ]
机构
[1] Kerala Govt Polytech Coll, Dept Math, Kozhikode 673005, India
[2] Natl Inst Technol, Dept Math, Calicut, Kerala, India
关键词
Fuzzy graph; strong arcs; domination number; ARCS;
D O I
10.3233/IFS-141277
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
In this paper different types of degrees of a node in fuzzy graphs are discussed. The domination number of K-sigma 1,K- sigma 2 as given in the paper "Domination in fuzzy graphs-I" by A. Somasundaram and S. Somasundaram is modified. A lower bound and an upper bound for the domination number of fuzzy graphs are obtained. Domination in fuzzy trees is studied. It is established that the set of fuzzy cut nodes of a fuzzy tree is a dominating set and obtained a necessary and sufficient condition for the set of fuzzy end nodes to be a dominating set. Also it is proved that in a fuzzy tree each node of a dominating set is incident on a fuzzy bridge.
引用
收藏
页码:3205 / 3212
页数:8
相关论文
共 50 条
  • [1] Fuzzy domination in fuzzy graphs
    Lekha, A.
    Parvathy, K. S.
    JOURNAL OF INTELLIGENT & FUZZY SYSTEMS, 2023, 44 (02) : 3071 - 3077
  • [2] Domination in fuzzy graphs - I
    Somasundaram, A
    Somasundaram, S
    PATTERN RECOGNITION LETTERS, 1998, 19 (09) : 787 - 791
  • [3] Domination in products of fuzzy graphs
    Somasundaram, A
    INTERNATIONAL JOURNAL OF UNCERTAINTY FUZZINESS AND KNOWLEDGE-BASED SYSTEMS, 2005, 13 (02) : 195 - 204
  • [4] A survey on the domination of fuzzy graphs
    Rana, Akul
    DISCRETE MATHEMATICS ALGORITHMS AND APPLICATIONS, 2021, 13 (01)
  • [5] Domination in Pythagorean fuzzy graphs
    Banitalebi, Sadegh
    Borzooei, Rajab Ali
    GRANULAR COMPUTING, 2023, 8 (05) : 959 - 966
  • [6] CONTRACTION AND DOMINATION IN FUZZY GRAPHS
    Ramya, S.
    Lavanya, S.
    TWMS JOURNAL OF APPLIED AND ENGINEERING MATHEMATICS, 2023, 13 (01): : 133 - 142
  • [7] Domination in Fuzzy Directed Graphs
    Enriquez, Enrico
    Estrada, Grace
    Loquias, Carmelita
    Bacalso, Reuella J.
    Ocampo, Lanndon
    MATHEMATICS, 2021, 9 (17)
  • [8] Strong Domination in Fuzzy Graphs
    Manjusha, O. T.
    Sunitha, M. S.
    FUZZY INFORMATION AND ENGINEERING, 2015, 7 (03) : 369 - 377
  • [9] Domination in Pythagorean fuzzy graphs
    Sadegh Banitalebi
    Rajab Ali Borzooei
    Granular Computing, 2023, 8 (5) : 959 - 966
  • [10] Domination in Bipolar Fuzzy Graphs
    Karunambigai, M. G.
    Akram, M.
    Palanivel, K.
    Sivasankar, S.
    2013 IEEE INTERNATIONAL CONFERENCE ON FUZZY SYSTEMS (FUZZ - IEEE 2013), 2013,