Gelin-Cesaro identities for Fibonacci and Lucas quaternions

被引:1
|
作者
Dasdemir, Ahmet [1 ]
机构
[1] Kastamonu Univ, Dept Math, Kastamonu, Turkey
关键词
Fibonacci quaternion; Gelin-Cesaro identity; Catalan's identity;
D O I
10.2478/aupcsm-2019-0010
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
To date, many identities of different quaternions, including the Fibonacci and Lucas quaternions, have been investigated. In this study, we present Gelin-Cesaro identities for Fibonacci and Lucas quaternions. The identities are a worthy addition to the literature. Moreover, we give Catalan's identity for the Lucas quaternions.
引用
收藏
页码:137 / 144
页数:8
相关论文
共 50 条
  • [21] A note on bi-periodic Fibonacci and Lucas quaternions
    Tan, Elif
    Yilmaz, Semih
    Sahin, Murat
    CHAOS SOLITONS & FRACTALS, 2016, 85 : 138 - 142
  • [22] Pauli Gaussian Fibonacci and Pauli Gaussian Lucas Quaternions
    Azak, Ayse Zeynep
    MATHEMATICS, 2022, 10 (24)
  • [23] Quaternion Algebras and Generalized Fibonacci-Lucas Quaternions
    Flaut, Cristina
    Savin, Diana
    ADVANCES IN APPLIED CLIFFORD ALGEBRAS, 2015, 25 (04) : 853 - 862
  • [24] DERIVATIONS AND IDENTITIES FOR FIBONACCI AND LUCAS POLYNOMIALS
    Bedratyuk, Leonid
    FIBONACCI QUARTERLY, 2013, 51 (04): : 351 - 366
  • [25] Identities on generalized Fibonacci and Lucas numbers
    Nagaraja, K. M.
    Dhanya, P.
    NOTES ON NUMBER THEORY AND DISCRETE MATHEMATICS, 2020, 26 (03) : 189 - 202
  • [26] On Split k-Fibonacci and k-Lucas Quaternions
    Polatli, Emrah
    Kizilates, Can
    Kesim, Seyhun
    ADVANCES IN APPLIED CLIFFORD ALGEBRAS, 2016, 26 (01) : 353 - 362
  • [27] Construction of dual-generalized complex Fibonacci and Lucas quaternions
    Senturk, G. Y.
    Gurses, N.
    Yuce, S.
    CARPATHIAN MATHEMATICAL PUBLICATIONS, 2022, 14 (02) : 406 - 418
  • [28] ON THE PROPERTIES OF (p, q)-FIBONACCI AND (p, q)-LUCAS QUATERNIONS
    Patel, Bijan Kumar
    Ray, Prasanta Kumar
    MATHEMATICAL REPORTS, 2019, 21 (01): : 15 - 25
  • [29] On Split k-Fibonacci and k-Lucas Quaternions
    Emrah Polatli
    Can Kizilates
    Seyhun Kesim
    Advances in Applied Clifford Algebras, 2016, 26 : 353 - 362
  • [30] SOME IDENTITIES FOR GENERALIZED FIBONACCI AND LUCAS SEQUENCES
    Irmak, Nurettin
    Alp, Murat
    HACETTEPE JOURNAL OF MATHEMATICS AND STATISTICS, 2013, 42 (04): : 331 - 338