Informational Non-Differentiable Entropy and Uncertainty Relations in Complex Systems

被引:11
|
作者
Agop, Maricel [1 ]
Gavrilut, Alina [2 ]
Crumpei, Gabriel [3 ]
Doroftei, Bogdan [4 ]
机构
[1] Gheorghe Asachi Tech Univ Iasi, Dept Phys, Iasi 700050, Romania
[2] Alexandru Ioan Cuza Univ, Fac Math, Iasi 700506, Romania
[3] Psychotherapy & Counseling Ctr Iasi, Iasi 700115, Romania
[4] Grigore T Popa Univ Med & Pharm, Origyn Fertil Ctr, Clin Hosp Obstet & Gynaecol, Iasi 700115, Romania
关键词
non-differentiable entropy; informational non-differentiable entropy; informational non-differentiable energy; uncertainty relations; RELATIVITY; TRANSPORT; TIME;
D O I
10.3390/e16116042
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Considering that the movements of complex system entities take place on continuous, but non-differentiable, curves, concepts, like non-differentiable entropy, informational non-differentiable entropy and informational non-differentiable energy, are introduced. First of all, the dynamics equations of the complex system entities (Schrodinger-type or fractal hydrodynamic-type) are obtained. The last one gives a specific fractal potential, which generates uncertainty relations through non-differentiable entropy. Next, the correlation between informational non-differentiable entropy and informational non-differentiable energy implies specific uncertainty relations through a maximization principle of the informational non-differentiable entropy and for a constant value of the informational non-differentiable energy. Finally, for a harmonic oscillator, the constant value of the informational non-differentiable energy is equivalent to a quantification condition.
引用
收藏
页码:6042 / 6058
页数:17
相关论文
共 50 条
  • [1] THERMODYNAMICS OF NON-DIFFERENTIABLE SYSTEMS
    BOYLING, JB
    INTERNATIONAL JOURNAL OF THEORETICAL PHYSICS, 1974, 9 (06) : 379 - 392
  • [2] Bagging non-differentiable estimators in complex surveys
    Wang, Jianqiang C.
    Opsomer, Jean D.
    Wang, Haonan
    SURVEY METHODOLOGY, 2014, 40 (02) : 189 - 209
  • [3] Implications of Non-Differentiable Entropy on a Space-Time Manifold
    Agop, Maricel
    Gavrilut, Alina
    Stefan, Gavril
    Doroftei, Bogdan
    ENTROPY, 2015, 17 (04): : 2184 - 2197
  • [4] NON-DIFFERENTIABLE FUNCTIONS
    ANDRESEN, E
    MAULDON, JG
    DRISCOLL, RJ
    AMERICAN MATHEMATICAL MONTHLY, 1968, 75 (06): : 688 - &
  • [5] The singular set of solutions to non-differentiable elliptic systems
    Mingione, G
    ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 2003, 166 (04) : 287 - 301
  • [6] The Singular Set of Solutions to Non-Differentiable Elliptic Systems
    Giuseppe Mingione
    Archive for Rational Mechanics and Analysis, 2003, 166 : 287 - 301
  • [7] Non-differentiable deformations of Rn
    Cresson, Jacky
    INTERNATIONAL JOURNAL OF GEOMETRIC METHODS IN MODERN PHYSICS, 2006, 3 (07) : 1395 - 1415
  • [8] Programming with a non-differentiable constraint
    G. C. Tuteja
    OPSEARCH, 2004, 41 (4) : 291 - 297
  • [9] Non-differentiable variational principles
    Cresson, J
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2005, 307 (01) : 48 - 64
  • [10] Non-Differentiable Function Tracking
    Kamal, Shyam
    Yu, Xinghuo
    Sharma, Rahul Kumar
    Mishra, Jyoti
    Ghosh, Sandip
    IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS II-EXPRESS BRIEFS, 2019, 66 (11) : 1835 - 1839