Preparation and characterisation of TiN by microwave-assisted carbothermic reduction-nitridation in air atmosphere

被引:5
|
作者
Ru, Juanjian [1 ]
Hua, Yixin [2 ,3 ]
Wang, Ding [2 ]
机构
[1] Kunming Univ Sci & Technol, Fac Mat Sci & Engn, 68 Wenchang Rd,Yieryi St, Kunming 650093, Yunnan, Peoples R China
[2] Kunming Univ Sci & Technol, Fac Met & Energy Engn, Kunming, Yunnan, Peoples R China
[3] State Key Lab Complex Nonferrous Met Resources Cl, Kunming, Yunnan, Peoples R China
基金
中国博士后科学基金; 中国国家自然科学基金;
关键词
Titanium nitride; ilmenite; microwave; carbothermic reduction-nitridation; COMBUSTION SYNTHESIZED PRECURSOR; SOLID-STATE SYNTHESIS; TITANIUM NITRIDE; LOW-TEMPERATURE; POWDERS; MICROSTRUCTURE; NANOPOWDER; PARTICLES; EVOLUTION; NITROGEN;
D O I
10.1080/17436753.2017.1357292
中图分类号
TQ174 [陶瓷工业]; TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
Titanium nitride (TiN) is prepared from ilmenite (FeTiO3) powders by microwave-assisted carbothermic reduction-nitridation in air atmosphere followed by acid leaching treatment. The thermal analysis of the reduction-nitridation of FeTiO3 powders is conducted by thermogravimetry/differential scanning calorimeter. The phase transition sequence of microwave carbothermal synthesis of TiN-Fe composite is: FeTiO3 -> Fe + TiO2 -> Fe + TiN. There is no any other oxygen-deficient titanium oxides detected. Particularly, FeTiO3 can be transformed into TiN-Fe composite completely at 900 degrees C for 60min by microwave heating. The increase in both the reaction temperature and dwelling time is in favour of the transformation of FeTiO3. The product morphologies are spherical about 2-5m in size. Then TiN is obtained with the removal of Fe and their oxides from TiN-Fe composite by acid leaching treatment. This method not only reduces the reaction temperature significantly through microwave heating but also can simplify the operation process effectively.
引用
收藏
页码:468 / 476
页数:9
相关论文
共 50 条
  • [41] Microwave-assisted sample preparation in analytical chemistry
    Smith, FE
    Arsenault, EA
    TALANTA, 1996, 43 (08) : 1207 - 1268
  • [42] Preparation of CdS nanoparticles by microwave-assisted synthesis
    Tamasauskaite-Tamasiunaite, L.
    Grinciene, G.
    Simkunaite-Stanyniene, B.
    Naruskevicius, L.
    Pakstas, V.
    Selskis, A.
    Norkus, E.
    CHEMIJA, 2015, 26 (03): : 193 - 197
  • [43] Microwave-Assisted Phenothiazines Preparation by Thionation of Diphenylamines
    Filip, S. V.
    Silberg, I. A.
    Surducan, E.
    Vlassa, M.
    Synthetic Communications, 28 (02):
  • [44] Microwave-assisted preparation of polyferric sulfate coagulant
    Cheng, WP
    Yu, RF
    SEPARATION SCIENCE AND TECHNOLOGY, 2003, 38 (01) : 39 - 55
  • [45] Microwave-assisted preparation of magnetic albumin microspheres
    Chen, Chang-Yun
    Long, Qi
    Li, Xiao-Hua
    Xu, Jiao
    JOURNAL OF BIOACTIVE AND COMPATIBLE POLYMERS, 2008, 23 (05) : 490 - 500
  • [46] Microwave-assisted preparation of 2-methallyloxyphenol
    Li, J
    Pang, J
    Cao, GY
    Xi, ZW
    SYNTHETIC COMMUNICATIONS, 2000, 30 (07) : 1337 - 1342
  • [47] Microwave-Assisted Preparation of High Entropy Alloys
    Veronesi, Paolo
    Rosa, Roberto
    Colombini, Elena
    Leonelli, Cristina
    TECHNOLOGIES, 2015, 3 (04) : 182 - 197
  • [48] Microwave-assisted preparation of naphthenic acid esters
    Cirin-Novta, Vera
    Kuhajda, Ksenija
    Kevresan, Slavko
    Kandrac, Julijan
    Grbovic, Ljubica
    Vujic, Djura
    JOURNAL OF THE SERBIAN CHEMICAL SOCIETY, 2006, 71 (12) : 1263 - 1268
  • [49] Microwave-Assisted Preparation of Quinolone and Quinoline Derivatives
    Albrecht, Markus
    Osetska, Olga
    Rantanen, Toni
    Froehlich, Roland
    Bolma, Carsten
    SYNLETT, 2010, (07) : 1081 - 1084
  • [50] Microwave-assisted preparation of aryltetrazoleboronate esters.
    Schulz, MJ
    Coats, SJ
    Hlasta, DJ
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2004, 228 : U149 - U149