Polysaccharide production by plant cells in suspension: Experiments and mathematical modeling

被引:0
|
作者
Glicklis, R
Mills, D
Sitton, D
Stortelder, W
Merchuk, JC
机构
[1] Ben Gurion Univ Negev, Inst Appl Res, Program Biotechnol, IL-84105 Beer Sheva, Israel
[2] Ben Gurion Univ Negev, Dept Chem Engn, IL-84105 Beer Sheva, Israel
[3] Ctr Wiskunde & Informat, Amsterdam, Netherlands
关键词
plant cell suspension; polysaccharide; mathematical model;
D O I
10.1002/(SICI)1097-0290(19980320)57:6<732::AID-BIT10>3.0.CO;2-9
中图分类号
Q81 [生物工程学(生物技术)]; Q93 [微生物学];
学科分类号
071005 ; 0836 ; 090102 ; 100705 ;
摘要
Symphytum officinale L cells were grown in Erlenmeyer flasks at four different temperatures: 15, 20, 25, and 30 degrees C. A mathematical model of the culture growth is presented. The intracellular and extracellular products are considered in separate equations. An interrelation between fresh weight, dry weight, and viability is considered in the balances. The model includes a description of the changes in time of wet and dry biomass, cell viability, substrate concentration and polysaccharide concentration, both intra-and extracellular. The model was tested by fitting the numerical results to the data obtained. (C) 1998 John Wiley & Sons, Inc.
引用
收藏
页码:732 / 740
页数:9
相关论文
共 50 条
  • [1] Mathematical modeling of suspension bridges
    Holubová-Tajcová, G
    MATHEMATICS AND COMPUTERS IN SIMULATION, 1999, 50 (1-4) : 183 - 197
  • [2] Measuring NO production by plant tissues and suspension cultured cells
    Vitecek, Jan
    Reinohl, Vilem
    Jones, Russell L.
    MOLECULAR PLANT, 2008, 1 (02) : 270 - 284
  • [3] Mathematical modeling of capsular polysaccharide production by Neisseria meningitidis serogroup C in bioreactors
    Henriques, AWS
    Jessouroun, E
    Lima, EL
    Alves, TLM
    BRAZILIAN JOURNAL OF CHEMICAL ENGINEERING, 2005, 22 (04) : 585 - 592
  • [4] Mathematical modeling of the suspension flocculation by polyelectrolytes
    Berlin, AA
    Kislenko, VN
    Solomentseva, IM
    COLLOID JOURNAL, 1998, 60 (05) : 544 - 549
  • [5] MATHEMATICAL MODELING OF EXPERIMENTS AT THE NUCLOTRON
    Polanski, A.
    Uzhinsky, V. V.
    ACTA PHYSICA POLONICA B PROCEEDINGS SUPPLEMENT, 2018, 11 (04) : 641 - 645
  • [6] MATHEMATICAL MODELING OF PARTICLE SUSPENSION IN PACHUCA TANKS
    Esperanza Rodriguez, M.
    Humberto Castillejos, E.
    Acosta G, F. Andres
    EPD CONGRESS 2009, PROCEEDINGS, 2009, : 467 - 474
  • [7] Mathematical modeling and analysis of monoclonal antibody production by hybridoma cells
    Zeng, AP
    BIOTECHNOLOGY AND BIOENGINEERING, 1996, 50 (03) : 238 - 247
  • [8] Mathematical modeling of plant morphogenesis
    G. G. Lazareva
    V. V. Mironova
    N. A. Omelyanchuk
    I. V. Shvab
    V. A. Vshivkov
    D. N. Gorpinchenko
    S. V. Nikolaev
    N. A. Kolchanov
    Numerical Analysis and Applications, 2008, 1 (2)
  • [9] Mathematical Modeling of Plant Morphogenesis
    Lazareva, G. G.
    Mironova, V. V.
    Omelyanchuk, N. A.
    Shvab, I. V.
    Vshivkov, V. A.
    Gorpinchenko, D. N.
    Nikolaev, S. V.
    Kolchanov, N. A.
    NUMERICAL ANALYSIS AND APPLICATIONS, 2008, 1 (02) : 123 - 134
  • [10] Mathematical modeling of a polysaccharide-protein conjugation reaction
    Wen, Emily P.
    Quinn, Jennifer P.
    Manger, Walter E.
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2011, 241