共 50 条
Catalytic activity of CuxMnxFe3-2xO4/multi-walled carbon nanotubes (0 ≤ x ≤ 0.1) nanocomposites for p-nitrophenol degradation in catalyst/H2O2 system
被引:2
|作者:
Yu, Jiye
[1
]
Tian, Xiaojun
[2
]
Liu, Mingwang
[1
]
Jia, Zhenzhen
[1
]
Fang, Hongqin
[1
]
Liu, Yunfang
[1
]
Yu, Changyuan
[2
]
机构:
[1] Beijing Univ Chem Technol, Minist Educ, Key Lab Carbon Fiber & Funct Polymers, Beijing 100029, Peoples R China
[2] Beijing Univ Chem Technol, Sch Life Sci & Technol, Beijing 100029, Peoples R China
关键词:
Cu/Mn doping;
heterogeneous Fenton catalyst;
magnetite nanocomposite;
multi-walled carbon nanotubes;
wastewater treatment;
WASTE-WATER TREATMENT;
HETEROGENEOUS FENTON DEGRADATION;
ADVANCED OXIDATION PROCESSES;
PROCESS OPTIMIZATION;
HYDROGEN-PEROXIDE;
AQUEOUS-SOLUTION;
NANOPARTICLES;
MAGNETITE;
COMPOSITE;
OXIDE;
D O I:
10.2166/wst.2019.236
中图分类号:
X [环境科学、安全科学];
学科分类号:
08 ;
0830 ;
摘要:
Heterogeneous Fenton oxidation has become a very important wastewater-treatment method and its catalyst is crucial for good treatment effect. In order to improve the catalytic properties, the Cu and Mn elements were doped for CuxMnxFe3-2xO4/multi-walled carbon nanotubes (CuxMnxFe3-2xO4/ MWCNTs) nanocomposites (0 <= x <= 0.1) by co-precipitation method. The structure, morphology and surface properties of the nanocomposites were characterized by X-ray powder diffractometer (XRD), N-2-physisorption analysis, transmission electron microscope (TEM), and X-ray photoelectron spectroscopy (XPS). The CuxMnxFe3-2xO4/MWCNTs nanocomposites were used as heterogeneous Fenton catalysts for p-nitrophenol (p-NP) degradation. The catalytic performances of the Cu and/or Mn doped nanocomposites have remarkable improvement compared with Fe3O4/MWCNTs nanocomposite, especially for both Cu and Mn doped catalyst. For CuxMnxFe3-2xO4/MWCNTs nanocomposites, the catalytic performance increases with increasing x value and reaches a maximum at 0.075 of x value. At optimal condition, the p-NP conversion rate reaches 96.4% in 10 min for Cu0.075Mn0.075Fe2.85O4/MWCNTs nanocomposite. However, the mentioned rate for Fe3O4/ MWCNTs catalyst is only 14.5%. The chemical oxygen demand (COD) removal rates in 120 min for Cu0.075Mn0.075Fe2.85O4/MWCNTs and Fe3O4/MWCNTs catalysts are 82.7% and 67.3%, respectively. Furthermore, the p-NP conversion and COD removal rates of Cu0.075Mn0.075Fe2.85O4/MWCNTs nanocomposite still keep at 94.4% and 70.3% after five-time reuse, respectively. This catalyst shows good reusability for p-NP degradation and is very easy to recover from the treated water.
引用
收藏
页码:2345 / 2356
页数:12
相关论文