Supersymmetry and Bogomol'nyi equations in the Maxwell Chern-Simons systems

被引:0
|
作者
Damski, B [1 ]
机构
[1] Jagiellonian Univ, Inst Phys, PL-30059 Krakow, Poland
来源
ACTA PHYSICA POLONICA B | 2000年 / 31卷 / 03期
关键词
D O I
暂无
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We take advantage of the superspace formalism and explicitly find the N = 2 supersymmetric extension of the Maxwell Chern-Simons model. In our construction a special form of a potential term and indispensability of an additional neutral scalar field arise naturally. By considering the algebra of supersymmetric charges we find Bogomol'nyi equations for the investigated model.
引用
收藏
页码:637 / 646
页数:10
相关论文
共 50 条
  • [31] CONFORMAL SUPERSYMMETRY OF THE D=3 CHERN-SIMONS THEORY - CANONICAL FORMALISM
    FOUSSATS, A
    REPETTO, C
    ZANDRON, OP
    ZANDRON, OS
    CLASSICAL AND QUANTUM GRAVITY, 1992, 9 (10) : 2217 - 2229
  • [32] Two loop integrability for Chern-Simons theories with N=6 supersymmetry
    Minahan, J. A.
    Schulgin, W.
    Zarembo, K.
    JOURNAL OF HIGH ENERGY PHYSICS, 2009, (03):
  • [33] Infrared stable supersymmetry in Chern-Simons theories with matter and quenched disorder
    Hamidian, H
    PHYSICAL REVIEW LETTERS, 1998, 80 (07) : 1389 - 1392
  • [34] Gauge and supersymmetry invariance of N=2 boundary Chern-Simons theory
    Faizal, Mir
    Luo, Yuan
    Smith, Douglas J.
    Tan, Meng-Chwan
    Zhao, Qin
    NUCLEAR PHYSICS B, 2017, 914 : 577 - 598
  • [35] N=2 supersymmetry in a Chern-Simons system with the magnetic moment interaction
    Navratil, P
    PHYSICS LETTERS B, 1996, 365 (1-4) : 119 - 124
  • [36] Bogomol'nyi equations of classical solutions
    Atmaja, Ardian N.
    Ramadhan, Handhika S.
    PHYSICAL REVIEW D, 2014, 90 (10):
  • [37] Noncommutative Maxwell-Chern-Simons theory, duality and a new noncommutative Chern-Simons theory in d=3
    Dayi, ÖF
    PHYSICS LETTERS B, 2003, 560 (3-4) : 239 - 244
  • [38] NONRELATIVISTIC LIMIT OF CHERN-SIMONS GAUGED FIELD EQUATIONS
    Chae, Myeongju
    Yim, Jihyun
    COMMUNICATIONS OF THE KOREAN MATHEMATICAL SOCIETY, 2018, 33 (03): : 871 - 888
  • [39] Existence and asymptotic behaviors of solutions to Chern-Simons systems and equations on finite graphs
    Hou, Songbo
    Kong, Xiaoqing
    CALCULUS OF VARIATIONS AND PARTIAL DIFFERENTIAL EQUATIONS, 2025, 64 (03)
  • [40] The relativistic non-Abelian Chern-Simons equations
    Yang, YS
    COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1997, 186 (01) : 199 - 218