Cosmological Post-Newtonian Expansions to Arbitrary Order

被引:12
|
作者
Oliynyk, Todd A. [1 ]
机构
[1] Monash Univ, Sch Math Sci, Melbourne, Vic 3800, Australia
关键词
PARTIAL-DIFFERENTIAL EQUATIONS; DIFFERENT TIME SCALES; GENERAL-RELATIVITY; HYPERBOLIC SYSTEMS; LARGE PARAMETER; PERFECT FLUIDS; APPROXIMATION; UNIVERSE; LIMIT; EXISTENCE;
D O I
10.1007/s00220-009-0931-0
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We prove the existence of a large class of one parameter families of solutions to the Einstein-Euler equations that depend on the singular parameter epsilon = nu(T)/c (0 < epsilon < epsilon(0)), where c is the speed of light, and nu(T) is a typical speed of the gravitating fluid. These solutions are shown to exist on a common spacetime slab M congruent to [0, T) x T(3), and converge as epsilon SE arrow 0 to a solution of the cosmological Poisson-Euler equations of Newtonian gravity. Moreover, we establish that these solutions can be expanded in the parameter epsilon to any specified order with expansion coefficients that satisfy epsilon-independent (nonlocal) symmetric hyperbolic equations.
引用
收藏
页码:431 / 463
页数:33
相关论文
共 50 条
  • [31] Cosmological post-newtonian approximation in flat space-time theory of gravitation
    Petry, W
    ASTROPHYSICS AND SPACE SCIENCE, 2000, 272 (04) : 353 - 368
  • [32] Gravitational radiation reaction and balance equations to post-Newtonian order
    Blanchet, L.
    Physical Review D Particles, Fields, Gravitation and Cosmology, 55 (02):
  • [33] Equations of motion of compact binaries at the third post-Newtonian order
    Luc Blanchet
    Pramana, 2004, 63 : 685 - 701
  • [34] Cosmological Post-Newtonian Approximation in Flat Space-Time Theory of Gravitation
    W. Petry
    Astrophysics and Space Science, 2000, 272 : 353 - 368
  • [35] Renormalizing Love: tidal effects at the third post-Newtonian order
    Mandal, Manoj K.
    Mastrolia, Pierpaolo
    Silva, Hector O.
    Patil, Raj
    Steinhoff, Jan
    JOURNAL OF HIGH ENERGY PHYSICS, 2024, 2024 (02)
  • [36] Gravitational radiation reaction and balance equations to post-Newtonian order
    Blanchet, L
    PHYSICAL REVIEW D, 1997, 55 (02) : 714 - 732
  • [37] Equations of motion of compact binaries at the third post-Newtonian order
    Blanchet, L
    PRAMANA-JOURNAL OF PHYSICS, 2004, 63 (04): : 685 - 701
  • [38] Second-order post-Newtonian equations of light ray
    Gong, YX
    Xu, CM
    CHINESE ASTRONOMY AND ASTROPHYSICS, 2004, 28 (01) : 1 - 8
  • [39] Post-Newtonian limit: second-order Jefimenko equations
    David Pérez Carlos
    Augusto Espinoza
    Andrew Chubykalo
    The European Physical Journal C, 2020, 80
  • [40] Post-Newtonian limit: second-order Jefimenko equations
    Perez Carlos, David
    Espinoza, Augusto
    Chubykalo, Andrew
    EUROPEAN PHYSICAL JOURNAL C, 2020, 80 (07):