EM algorithms for multivariate Gaussian mixture models with truncated and censored data

被引:96
|
作者
Lee, Gyemin [1 ]
Scott, Clayton [1 ,2 ]
机构
[1] Univ Michigan, Dept Elect Engn & Comp Sci, Ann Arbor, MI 48109 USA
[2] Univ Michigan, Dept Stat, Ann Arbor, MI 48109 USA
基金
美国国家科学基金会;
关键词
Multivariate Gaussian mixture model; EM algorithm; Truncation; Censoring; Multivariate truncated Gaussian distribution; FLOW-CYTOMETRY DATA; T-PROBABILITIES; NUMERICAL COMPUTATION; MAXIMUM-LIKELIHOOD;
D O I
10.1016/j.csda.2012.03.003
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
We present expectation-maximization (EM) algorithms for fitting multivariate Gaussian mixture models to data that are truncated, censored or truncated and censored. These two types of incomplete measurements are naturally handled together through their relation to the multivariate truncated Gaussian distribution. We illustrate our algorithms on synthetic and flow cytometry data. (C) 2012 Elsevier B.V. All rights reserved.
引用
收藏
页码:2816 / 2829
页数:14
相关论文
共 50 条
  • [41] A new iterative initialization of EM algorithm for Gaussian mixture models
    You, Jie
    Li, Zhaoxuan
    Du, Junli
    PLOS ONE, 2023, 18 (04):
  • [42] Computing Gaussian mixture models with EM using equivalence constraints
    Shental, N
    Bar-Hillel, A
    Hertz, T
    Weinshall, D
    ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 16, 2004, 16 : 465 - 472
  • [43] A New Method for Random Initialization of the EM Algorithm for Multivariate Gaussian Mixture Learning
    Kwedlo, Wojciech
    PROCEEDINGS OF THE 8TH INTERNATIONAL CONFERENCE ON COMPUTER RECOGNITION SYSTEMS CORES 2013, 2013, 226 : 81 - 90
  • [44] Asymptotically Optimal Truncated Multivariate Gaussian Hypothesis Testing With Application to Consensus Algorithms
    Zhang, Jiangfan
    Blum, Rick S.
    IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2014, 62 (02) : 431 - 442
  • [45] Model choice for binned-EM algorithms of fourteen parsimonious Gaussian mixture models by BIC and ICL criteria
    Wu, Jingwen
    Hamdan, Hani
    IEEE INTERNATIONAL CONFERENCE ON SYSTEM SCIENCE AND ENGINEERING (ICSSE 2013), 2013, : 351 - 356
  • [46] Adapted Expectation Maximization Algorithm for Gaussian Mixture Clustering With Censored Data
    Yu H.-Y.
    Chen J.-J.
    Qiu H.
    Wang Y.
    Wang R.-F.
    Zidonghua Xuebao/Acta Automatica Sinica, 2021, 47 (06): : 1302 - 1314
  • [47] Using the EM algorithm for inference in a mixture of distributions with censored but partially identifiable data
    Contreras-Cristan, Alberto
    COMPUTATIONAL STATISTICS & DATA ANALYSIS, 2007, 51 (05) : 2769 - 2781
  • [48] Sleep spindle detection using multivariate Gaussian mixture models
    Patti, Chanakya Reddy
    Penzel, Thomas
    Cvetkovic, Dean
    JOURNAL OF SLEEP RESEARCH, 2018, 27 (04)
  • [49] Flexible clustering via Gaussian parsimonious mixture models with censored and missing values
    Wang, Wan-Lun
    Lachos, Victor Hugo
    Chen, Yu-Chien
    Lin, Tsung-, I
    TEST, 2025,
  • [50] An alternative to EM for Gaussian mixture models: batch and stochastic Riemannian optimization
    Hosseini, Reshad
    Sra, Suvrit
    MATHEMATICAL PROGRAMMING, 2020, 181 (01) : 187 - 223