EM algorithms for multivariate Gaussian mixture models with truncated and censored data

被引:96
|
作者
Lee, Gyemin [1 ]
Scott, Clayton [1 ,2 ]
机构
[1] Univ Michigan, Dept Elect Engn & Comp Sci, Ann Arbor, MI 48109 USA
[2] Univ Michigan, Dept Stat, Ann Arbor, MI 48109 USA
基金
美国国家科学基金会;
关键词
Multivariate Gaussian mixture model; EM algorithm; Truncation; Censoring; Multivariate truncated Gaussian distribution; FLOW-CYTOMETRY DATA; T-PROBABILITIES; NUMERICAL COMPUTATION; MAXIMUM-LIKELIHOOD;
D O I
10.1016/j.csda.2012.03.003
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
We present expectation-maximization (EM) algorithms for fitting multivariate Gaussian mixture models to data that are truncated, censored or truncated and censored. These two types of incomplete measurements are naturally handled together through their relation to the multivariate truncated Gaussian distribution. We illustrate our algorithms on synthetic and flow cytometry data. (C) 2012 Elsevier B.V. All rights reserved.
引用
收藏
页码:2816 / 2829
页数:14
相关论文
共 50 条
  • [31] Exemplar Based Mixture Models with Censored Data
    Kohjima, Masahiro
    Matsubayashi, Tatsushi
    Toda, Hiroyuki
    ASIAN CONFERENCE ON MACHINE LEARNING, VOL 101, 2019, 101 : 535 - 550
  • [32] EM Algorithm for Truncated and Censored Poisson Likelihoods
    Viwatwongkasem, Chukiat
    2016 INTERNATIONAL ELECTRICAL ENGINEERING CONGRESS, IEECON2016, 2016, : 240 - 243
  • [33] Improved convergence guarantees for learning Gaussian mixture models by EM and gradient EM
    Segol, Nimrod
    Nadler, Boaz
    ELECTRONIC JOURNAL OF STATISTICS, 2021, 15 (02): : 4510 - 4544
  • [34] Modeling Multivariate Spray Characteristics with Gaussian Mixture Models
    Wicker, Markus
    Ates, Cihan
    Okraschevski, Max
    Holz, Simon
    Koch, Rainer
    Bauer, Hans-Joerg
    ENERGIES, 2023, 16 (19)
  • [35] Monotone constrained EM algorithms for multinormal mixture models
    Ingrassia, Salvatore
    Rocci, Roberto
    DATA ANALYSIS, CLASSIFICATION AND THE FORWARD SEARCH, 2006, : 111 - +
  • [36] Multivariate Regression with Incremental Learning of Gaussian Mixture Models
    Acevedo-Valle, Juan M.
    Trejo, Karla
    Angulo, Cecilio
    RECENT ADVANCES IN ARTIFICIAL INTELLIGENCE RESEARCH AND DEVELOPMENT, 2017, 300 : 196 - 205
  • [37] Semiparametric Fractional Imputation Using Gaussian Mixture Models for Handling Multivariate Missing Data
    Sang, Hejian
    Kim, Jae Kwang
    Lee, Danhyang
    JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 2022, 117 (538) : 654 - 663
  • [38] A new clustering method of gene expression data based on multivariate Gaussian mixture models
    Liu, Zhe
    Song, Yu-qing
    Xie, Cong-hua
    Tang, Zheng
    SIGNAL IMAGE AND VIDEO PROCESSING, 2016, 10 (02) : 359 - 368
  • [39] A new clustering method of gene expression data based on multivariate Gaussian mixture models
    Zhe Liu
    Yu-qing Song
    Cong-hua Xie
    Zheng Tang
    Signal, Image and Video Processing, 2016, 10 : 359 - 368
  • [40] Continuous covariate frailty models for censored and truncated clustered data
    Lopez-de-Ullibarri, Ignacio
    Janssen, Paul
    Cao, Ricardo
    JOURNAL OF STATISTICAL PLANNING AND INFERENCE, 2012, 142 (07) : 1864 - 1877