Benchmarking Multimodal Sentiment Analysis

被引:31
|
作者
Cambria, Erik [1 ]
Hazarika, Devamanyu [2 ]
Poria, Soujanya [3 ]
Hussain, Amir [4 ]
Subramanyam, R. B. V. [2 ]
机构
[1] Nanyang Technol Univ, Sch Comp Sci & Engn, Singapore, Singapore
[2] Natl Inst Technol, Warangal, Andhra Pradesh, India
[3] Nanyang Technol Univ, Temasek Labs, Singapore, Singapore
[4] Univ Stirling, Sch Nat Sci, Stirling, Scotland
关键词
Multimodal sentiment analysis; Emotion detection; Deep learning; Convolutional neural networks; EMOTION RECOGNITION;
D O I
10.1007/978-3-319-77116-8_13
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
We propose a deep-learning-based framework for multimodal sentiment analysis and emotion recognition. In particular, we leverage on the power of convolutional neural networks to obtain a performance improvement of 10% over the state of the art by combining visual, text and audio features. We also discuss some major issues frequently ignored in multimodal sentiment analysis research, e.g., role of speaker-independent models, importance of different modalities, and generalizability. The framework illustrates the different facets of analysis to be considered while performing multimodal sentiment analysis and, hence, serves as a new benchmark for future research in this emerging field.
引用
收藏
页码:166 / 179
页数:14
相关论文
共 50 条
  • [31] A Multitask Learning Framework for Multimodal Sentiment Analysis
    Jiang, Dazhi
    Wei, Runguo
    Liu, Hao
    Wen, Jintao
    Tu, Geng
    Zheng, Lin
    Cambria, Erik
    21ST IEEE INTERNATIONAL CONFERENCE ON DATA MINING WORKSHOPS ICDMW 2021, 2021, : 151 - 157
  • [32] Multimodal Sentiment Analysis with Temporal Modality Modality
    Qian, Fan
    Han, Jiqing
    INTERSPEECH 2021, 2021, : 3385 - 3389
  • [33] Multimodal sentiment analysis based on multiple attention
    Wang, Hongbin
    Ren, Chun
    Yu, Zhengtao
    ENGINEERING APPLICATIONS OF ARTIFICIAL INTELLIGENCE, 2025, 140
  • [34] MemoSen: A Multimodal Dataset for Sentiment Analysis of Memes
    Hossain, Eftekhar
    Sharif, Omar
    Hoque, Mohammed Moshiul
    LREC 2022: THIRTEEN INTERNATIONAL CONFERENCE ON LANGUAGE RESOURCES AND EVALUATION, 2022, : 1542 - 1554
  • [35] PowMix: A Versatile Regularizer for Multimodal Sentiment Analysis
    Georgiou, Efthymios
    Avrithis, Yannis
    Potamianos, Alexandros
    IEEE-ACM TRANSACTIONS ON AUDIO SPEECH AND LANGUAGE PROCESSING, 2024, 32 : 5010 - 5023
  • [36] Multimodal learning for topic sentiment analysis in microblogging
    Huang, Faliang
    Zhang, Shichao
    Zhang, Jilian
    Yu, Ge
    NEUROCOMPUTING, 2017, 253 : 144 - 153
  • [37] Disentanglement Translation Network for multimodal sentiment analysis
    Zeng, Ying
    Yan, Wenjun
    Mai, Sijie
    Hu, Haifeng
    INFORMATION FUSION, 2024, 102
  • [38] Analyzing Modality Robustness in Multimodal Sentiment Analysis
    Hazarika, Devamanyu
    Li, Yingting
    Cheng, Bo
    Zhao, Shuai
    Zimmermann, Roger
    Pone, Soujanya
    NAACL 2022: THE 2022 CONFERENCE OF THE NORTH AMERICAN CHAPTER OF THE ASSOCIATION FOR COMPUTATIONAL LINGUISTICS: HUMAN LANGUAGE TECHNOLOGIES, 2022, : 685 - 696
  • [39] Deep Learning Approaches on Multimodal Sentiment Analysis
    Cai, Zisheng
    Gao, Han
    Li, Jiaye
    Wang, Xinyi
    2022 IEEE INTERNATIONAL CONFERENCE ON ELECTRICAL ENGINEERING, BIG DATA AND ALGORITHMS (EEBDA), 2022, : 1127 - 1131
  • [40] Multimodal Sentiment Analysis To Explore the Structure of Emotions
    Hu, Anthony
    Flaxman, Seth
    KDD'18: PROCEEDINGS OF THE 24TH ACM SIGKDD INTERNATIONAL CONFERENCE ON KNOWLEDGE DISCOVERY & DATA MINING, 2018, : 350 - 358