Geometry and stability of tautological bundles on Hilbert schemes of points

被引:11
|
作者
Stapleton, David [1 ]
机构
[1] SUNY Stony Brook, Dept Math, Math Tower 2118, Stony Brook, NY 11794 USA
关键词
Hilbert schemes of surfaces; vector bundles on surfaces; Fourier-Mukai transforms; slope-stability; spectral curves; log tangent bundle; tautological bundles; Hilbert schemes of points; VECTOR-BUNDLES; SURFACE; REPRESENTATIONS; COHOMOLOGY; SHEAVES;
D O I
10.2140/ant.2016.10.1173
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We explore the geometry and establish the slope-stability of tautological vector bundles on Hilbert schemes of points on smooth surfaces. By establishing stability in general, we complete a series of results of Schlickewei and Wandel, who proved the slope-stability of these vector bundles for Hilbert schemes of 2 points or 3 points on K3 or abelian surfaces with Picard group restrictions. In exploring the geometry, we show that every sufficiently positive semistable vector bundle on a smooth curve arises as the restriction of a tautological vector bundle on the Hilbert scheme of points on the projective plane. Moreover, we show that the tautological bundle of the tangent bundle is naturally isomorphic to the log tangent sheaf of the exceptional divisor of the Hilbert-Chow morphism.
引用
收藏
页码:1173 / 1190
页数:18
相关论文
共 50 条
  • [31] Hilbert schemes of 8 points
    Cartwright, Dustin A.
    Erman, Daniel
    Velasco, Mauricio
    Viray, Bianca
    ALGEBRA & NUMBER THEORY, 2009, 3 (07) : 763 - 795
  • [32] REPRESENTABILITY OF HILBERT SCHEMES AND HILBERT STACKS OF POINTS
    Rydh, David
    COMMUNICATIONS IN ALGEBRA, 2011, 39 (07) : 2632 - 2646
  • [33] GEOMETRY OF PUNCTUAL HILBERT SCHEMES
    GRANGER, M
    BULLETIN DE LA SOCIETE MATHEMATIQUE DE FRANCE, 1983, 111 (02): : 1 - 84
  • [34] Local Gromov-Witten invariants and tautological sheaves on Hilbert schemes
    YANG Fei & ZHOU Jian Department of Mathematical Sciences
    ScienceChina(Mathematics), 2011, 54 (01) : 47 - 54
  • [35] Local Gromov-Witten invariants and tautological sheaves on Hilbert schemes
    Fei Yang
    Jian Zhou
    Science China Mathematics, 2011, 54 : 47 - 54
  • [36] Some families of big and stable bundles on K3 surfaces and on their Hilbert schemes of points
    Gilberto Bini
    Samuel Boissière
    Flaminio Flamini
    manuscripta mathematica, 2023, 172 : 705 - 738
  • [37] Some families of big and stable bundles on K3 surfaces and on their Hilbert schemes of points
    Bini, Gilberto
    Boissiere, Samuel
    Flamini, Flaminio
    MANUSCRIPTA MATHEMATICA, 2023, 172 (3-4) : 705 - 738
  • [38] Local Gromov-Witten invariants and tautological sheaves on Hilbert schemes
    Yang Fei
    Zhou Jian
    SCIENCE CHINA-MATHEMATICS, 2011, 54 (01) : 47 - 54
  • [39] On vector bundles over surfaces and Hilbert schemes
    Biswas, Indranil
    Nagaraj, D. S.
    ARCHIV DER MATHEMATIK, 2013, 101 (06) : 513 - 517
  • [40] On vector bundles over surfaces and Hilbert schemes
    Indranil Biswas
    D. S. Nagaraj
    Archiv der Mathematik, 2013, 101 : 513 - 517