SLIDER: A Generic Metaheuristic for the Discovery of Correlated Motifs in Protein-Protein Interaction Networks

被引:5
|
作者
Boyen, Peter [1 ,2 ]
Van Dyck, Dries [1 ,2 ]
Neven, Frank [1 ,2 ]
van Ham, Roeland C. H. J.
van Dijk, Aalt D. J. [3 ]
机构
[1] Hasselt Univ, B-3590 Diepenbeek, Belgium
[2] Transnatl Univ Limburg, B-3590 Diepenbeek, Belgium
[3] Wageningen Univ & Res Ctr, Bioinformat Grp, NL-6708 PB Wageningen, Netherlands
关键词
Graphs and networks; biology and genetics; PAIRS;
D O I
10.1109/TCBB.2011.17
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
Correlated motif mining (CMM) is the problem of finding overrepresented pairs of patterns, called motifs, in sequences of interacting proteins. Algorithmic solutions for CMM thereby provide a computational method for predicting binding sites for protein interaction. In this paper, we adopt a motif-driven approach where the support of candidate motif pairs is evaluated in the network. We experimentally establish the superiority of the Chi-square-based support measure over other support measures. Furthermore, we obtain that CMM is an NP-hard problem for a large class of support measures ( including Chi-square) and reformulate the search for correlated motifs as a combinatorial optimization problem. We then present the generic metaheuristic SLIDER which uses steepest ascent with a neighborhood function based on sliding motifs and employs the Chi-square-based support measure. We show that SLIDER outperforms existing motif-driven CMM methods and scales to large protein-protein interaction networks. The SLIDER-implementation and the data used in the experiments are available on http://bioinformatics.uhasselt.be.
引用
收藏
页码:1344 / 1357
页数:14
相关论文
共 50 条
  • [21] Conserved network motifs allow protein-protein interaction prediction
    Albert, I
    Albert, R
    BIOINFORMATICS, 2004, 20 (18) : 3346 - 3352
  • [22] Exploiting protein-protein interactions for automated discovery of promiscuous binding motifs
    Tan, SH
    Sung, WK
    Ng, SK
    FEBS JOURNAL, 2005, 272 : 115 - 115
  • [23] Protein-protein interaction prediction with correlated gene ontology
    Qian, M
    Wang, JZ
    PROGRESS IN BIOCHEMISTRY AND BIOPHYSICS, 2005, 32 (05) : 449 - 455
  • [24] Protein-protein interaction networks: from interactions to networks
    Cho, SY
    Park, SG
    Lee, DH
    Park, BC
    JOURNAL OF BIOCHEMISTRY AND MOLECULAR BIOLOGY, 2004, 37 (01): : 45 - 52
  • [25] Modulating protein-protein interaction networks in protein homeostasis
    Zhong, Mengqi
    Lee, Gregory M.
    Sijbesma, Eline
    Ottmann, Christian
    Arkin, Michelle R.
    CURRENT OPINION IN CHEMICAL BIOLOGY, 2019, 50 : 55 - 65
  • [26] A Systematic Approach to the Discovery of Protein-Protein Interaction Stabilizers
    Kenanova, Dyana N.
    Visser, Emira J.
    Virta, Johanna M.
    Sijbesma, Eline
    Centorrino, Federica
    Vickery, Holly R.
    Zhong, Mengqi
    Neitz, R. Jeffrey
    Brunsveld, Luc
    Ottmann, Christian
    Arkin, Michelle R.
    ACS CENTRAL SCIENCE, 2023, 9 (05) : 937 - 946
  • [27] Visualization of protein-protein interaction network for knowledge discovery
    Zhu, WZ
    Lin, X
    Hu, XH
    Sokhansanj, BA
    2005 IEEE International Conference on Granular Computing, Vols 1 and 2, 2005, : 373 - 377
  • [28] Noncellular screening for the discovery of protein-protein interaction modulators
    Kieffer, Charline
    Jourdan, Jean Pierre
    Jouanne, Marie
    Voisin-Chiret, Anne Sophie
    DRUG DISCOVERY TODAY, 2020, 25 (09) : 1592 - 1603
  • [29] Uncovering the structure of protein-protein interaction networks
    Przulj, N.
    Corneil, D.
    Jurisica, I.
    MOLECULAR & CELLULAR PROTEOMICS, 2005, 4 (08) : S54 - S54
  • [30] Interdependent Patterns in Protein-Protein Interaction Networks
    Sun, Peng Gang
    Quan, Yining
    Miao, Qiguang
    IEEE TRANSACTIONS ON NETWORK SCIENCE AND ENGINEERING, 2020, 7 (04): : 3257 - 3265