Convergency of the Monte Carlo algorithm for the solution of the Wigner quantum-transport equation

被引:14
|
作者
Nedjalkov, M
Dimov, I
Rossi, F
Jacoboni, C
机构
[1] UNIV MODENA,DIPARTIMENTO FIS,I-41100 MODENA,ITALY
[2] UNIV MODENA,IST NAZL FIS MAT,I-41100 MODENA,ITALY
关键词
integral equations; Wigner function; Neumann expansion; convergency; Monte Carlo method;
D O I
10.1016/0895-7177(96)00047-7
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
The Wigner function provides a convenient description for single-particle quantum transport in space dependent systems, such as modern nanoelectronic devices. A Monte Carlo algorithm has been recently introduced for the solution of this integro-differential equation. However, when the potential applied to the system has different limits at + and -infinity, a convergence problem arises for the kernel of the integral part of the equation. In this paper, we discuss the rigorous mathematical aspects of the convergency of the solution of the Wigner equation and of the Neumann expansion on which the Monte Carlo algorithm is based.
引用
收藏
页码:159 / 166
页数:8
相关论文
共 50 条
  • [1] Monte Carlo solution of the Wigner transport equation
    Rossi, Fausto
    Jacoboni, Carlo
    Nedjalkov, M.
    Semiconductor Science and Technology, 1994, 9 (5 SUPPL) : 934 - 936
  • [2] A MONTE-CARLO SOLUTION OF THE WIGNER TRANSPORT-EQUATION
    ROSSI, F
    JACOBONI, C
    NEDJALKOV, M
    SEMICONDUCTOR SCIENCE AND TECHNOLOGY, 1994, 9 (05) : 934 - 936
  • [3] Wigner Monte Carlo Approach to Quantum Transport in Nanodevices
    Dollfus, P.
    Querlioz, D.
    Saint-Martin, J.
    Do, V. -N.
    Bournel, A.
    SISPAD: 2008 INTERNATIONAL CONFERENCE ON SIMULATION OF SEMICONDUCTOR PROCESSES AND DEVICES, 2008, : 277 - 280
  • [4] Analysis of quantum-transport phenomena in mesoscopic systems: A Monte Carlo approach
    Ragazzi, S
    DiCarlo, A
    Lugli, P
    Rossi, F
    PHYSICA STATUS SOLIDI B-BASIC RESEARCH, 1997, 204 (01): : 339 - 342
  • [5] Microscopic theory of quantum-transport phenomena in mesoscopic systems: A Monte Carlo approach
    Rossi, F
    Di Carlo, A
    Lugli, P
    PHYSICAL REVIEW LETTERS, 1998, 80 (15) : 3348 - 3351
  • [6] Convergency of the Monte Carlo algorithms for linear transport modeling
    Nedjalkov, M
    Dimov, I
    MATHEMATICS AND COMPUTERS IN SIMULATION, 1998, 47 (2-5) : 383 - 390
  • [8] Efficient Monte Carlo-based algorithms for the Wigner transport equation
    Muscato, Orazio
    Di Stefano, Vincenza
    20TH INTERNATIONAL CONFERENCE ON ELECTRON DYNAMICS IN SEMICONDUCTORS, OPTOELECTRONICS AND NANOSTRUCTURES (EDISON 20), 2017, 906
  • [9] Dynamical equation and Monte Carlo simulation of the two-time Wigner function for electron quantum transport
    Brunetti, R
    Bertoni, A
    Bordone, P
    Jacoboni, C
    VLSI DESIGN, 2001, 13 (1-4) : 375 - 380
  • [10] Monte Carlo simulation of quantum electron transport based on Wigner paths
    Bordone, P
    Bertoni, A
    Brunetti, R
    Jacoboni, C
    MATHEMATICS AND COMPUTERS IN SIMULATION, 2003, 62 (3-6) : 307 - 314