Real-Time Fusion Network for RGB-D Semantic Segmentation Incorporating Unexpected Obstacle Detection for Road-Driving Images

被引:109
|
作者
Sun, Lei [1 ]
Yang, Kailun [2 ]
Hu, Xinxin [1 ]
Hu, Weijian [1 ]
Wang, Kaiwei [3 ]
机构
[1] Zhejiang Univ, State Key Lab Modern Opt Instrumentat, Hangzhou 310027, Peoples R China
[2] Karlsruhe Inst Technol, Inst Anthropomat & Robot, D-76131 Karlsruhe, Germany
[3] Zhejiang Univ, Natl Opt Instrumentat Engn Technol Res Ctr, Hangzhou 310027, Peoples R China
关键词
Semantic scene understanding; RGB-D fusion; obstacle detection; autonomous driving;
D O I
10.1109/LRA.2020.3007457
中图分类号
TP24 [机器人技术];
学科分类号
080202 ; 1405 ;
摘要
Semantic segmentation has made striking progress due to the success of deep convolutional neural networks. Considering the demands of autonomous driving, real-time semantic segmentation has become a research hotspot these years. However, few real-time RGB-D fusion semantic segmentation studies are carried out despite readily accessible depth information nowadays. In this letter, we propose a real-time fusion semantic segmentation network termed RFNet that effectively exploits complementary cross-modal information. Building on an efficient network architecture, RFNet is capable of running swiftly, which satisfies autonomous vehicles applications. Multi-dataset training is lever-aged to incorporate unexpected small obstacle detection, enriching the recognizable classes required to face unforeseen hazards in the real world. A comprehensive set of experiments demonstrates the effectiveness of our framework. On Cityscapes, Our method outperforms previous state-of-the-art semantic segmenters, with excellent accuracy and 22 Hz inference speed at the full 2048 x 1024 resolution, outperforming most existing RGB-D networks.
引用
收藏
页码:5558 / 5565
页数:8
相关论文
共 50 条
  • [11] SCN: Switchable Context Network for Semantic Segmentation of RGB-D Images
    Lin, Di
    Zhang, Ruimao
    Ji, Yuanfeng
    Li, Ping
    Huang, Hui
    IEEE TRANSACTIONS ON CYBERNETICS, 2020, 50 (03) : 1120 - 1131
  • [12] RGB-D Fusion: Real-time Robust Tracking and Dense Mapping with RGB-D Data Fusion
    Lee, Seong-Oh
    Lim, Hwasup
    Kim, Hyoung-Gon
    Ahn, Sang Chul
    2014 IEEE/RSJ INTERNATIONAL CONFERENCE ON INTELLIGENT ROBOTS AND SYSTEMS (IROS 2014), 2014, : 2749 - 2754
  • [13] Evidence-Based Real-Time Road Segmentation With RGB-D Data Augmentation
    Xue, Feng
    Chang, Yicong
    Xu, Wenzhuang
    Liang, Wenteng
    Sheng, Fei
    Ming, Anlong
    IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS, 2025, 26 (02) : 1482 - 1493
  • [14] Cross Modal Multiscale Fusion Net for Real-time RGB-D Detection
    Yin, Kejie
    Liu, Sheng
    Liu, Ruyu
    Chen, Yibin
    Shen, Kang
    2018 24TH INTERNATIONAL CONFERENCE ON PATTERN RECOGNITION (ICPR), 2018, : 2386 - 2391
  • [15] Real-time Obstacle Detection by Road Plane Segmentation
    Santhanam, S.
    Balisavira, V.
    Pandey, V. K.
    2013 IEEE 9TH INTERNATIONAL COLLOQUIUM ON SIGNAL PROCESSING AND ITS APPLICATIONS (CSPA), 2013, : 151 - 154
  • [16] Cross-modal attention fusion network for RGB-D semantic segmentation
    Zhao, Qiankun
    Wan, Yingcai
    Xu, Jiqian
    Fang, Lijin
    NEUROCOMPUTING, 2023, 548
  • [17] RAFNet: RGB-D attention feature fusion network for indoor semantic segmentation
    Yan, Xingchao
    Hou, Sujuan
    Karim, Awudu
    Jia, Weikuan
    DISPLAYS, 2021, 70
  • [18] Real-time depth enhancement by fusion for RGB-D cameras
    Garcia, Frederic
    Aouada, Djamila
    Solignac, Thomas
    Mirbach, Bruno
    Ottersten, Bjoern
    IET COMPUTER VISION, 2013, 7 (05) : 335 - 345
  • [19] Real-time virtual mouse system using RGB-D images and fingertip detection
    Tran, Dinh-Son
    Ho, Ngoc-Huynh
    Yang, Hyung-Jeong
    Kim, Soo-Hyung
    Lee, Guee Sang
    MULTIMEDIA TOOLS AND APPLICATIONS, 2021, 80 (07) : 10473 - 10490
  • [20] Real-time virtual mouse system using RGB-D images and fingertip detection
    Dinh-Son Tran
    Ngoc-Huynh Ho
    Hyung-Jeong Yang
    Soo-Hyung Kim
    Guee Sang Lee
    Multimedia Tools and Applications, 2021, 80 : 10473 - 10490