First-principles study of copper nanoclusters for enhanced electrochemical CO2 reduction to CH4

被引:26
|
作者
Shin, Dong Yun [1 ]
Won, Jung Sik [1 ]
Kwon, Jeong An [1 ]
Kim, Min -Su [1 ]
Lim, Dong-Hee [1 ]
机构
[1] Chungbuk Natl Univ, Dept Environm Engn, Chungdae Ro 1, Cheongju 28644, Chungbuk, South Korea
基金
新加坡国家研究基金会;
关键词
Cu nanocluster; CO2; reduction; Potential-limiting step; Density functional theory; Frontier molecular orbital theory; EFFECTIVE CORE POTENTIALS; INITIO MOLECULAR-DYNAMICS; SINGLE-CRYSTAL ELECTRODES; CARBON-DIOXIDE REDUCTION; AUGMENTED-WAVE METHOD; ORGANIC-COMPOUNDS; OXYGEN REDUCTION; METAL-ELECTRODES; NANOPARTICLES; TRANSITION;
D O I
10.1016/j.comptc.2017.10.001
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
The conversion of carbon dioxide (CO2) into usable hydrocarbon fuels is important for recycling carbon resources and mitigating environmental problems. However, converting CO2, which is a stable compound, requires a high additional energy. Therefore, it is essential to understand the electrochemical reduction mechanisms of CO2 and develop more efficient catalysts. In this study, density functional theory calculations were performed to examine electrochemical CO2 reduction on copper nanoclusters (NCs) (ails NCs and Cuss NCs) and the Cu(1 11) surface to verify the effect of the surface geometry and size of the NCs on the conversion of CO2 into CH4. The highest energy barriers to CO2 reduction (i.e., the potential-limiting step) on the Cu-13 NCs (0.64 eV), Cuss NCs (0.83 eV), and Cu(1 11) surface (0.86 eV) lie in the CO* -> CHO* step. The formation of an adsorbed CHO intermediate depending on the catalyst surface geometry may significantly influence the energy barrier, as demonstrated by analyses of the electronic properties, such as the density of states, charge density difference, and highest occupied molecular orbital and lowest unoccupied molecular orbital band gap. (C) 2017 Elsevier B.V. All rights reserved.
引用
收藏
页码:84 / 90
页数:7
相关论文
共 50 条
  • [31] Adsorption of CO2 and CH4 molecules on the Pd-decorated C3N based sensors: A first-principles study
    Yu, Hao
    Zhou, Yunlei
    Liang, Zhao
    PHYSICA E-LOW-DIMENSIONAL SYSTEMS & NANOSTRUCTURES, 2021, 129
  • [32] Electrochemical Conversion of CO2 and CH4 at Subzero Temperatures
    Sargeant, Elizabeth
    Kolodziej, Adam
    Le Duff, Cecile S.
    Rodriguez, Paramaconi
    ACS CATALYSIS, 2020, 10 (14): : 7464 - 7474
  • [33] First-Principles Kinetic Monte Carlo Simulations for Single-Cluster Catalysis: Study of CO2 and CH4 Conversion on Pt/HfC
    Prats, Hector
    Stamatakis, Michail
    ACS CATALYSIS, 2025, 15 (04): : 2904 - 2915
  • [34] Metal-free Nanoporous Carbon as a Catalyst for Electrochemical Reduction of CO2 to CO and CH4
    Li, Wanlu
    Seredych, Mykola
    Rodriguez-Castellon, Enrique
    Bandosz, Teresa J.
    CHEMSUSCHEM, 2016, 9 (06) : 606 - 616
  • [35] First-Principles Study of Adsorption of CH4 on a Fluorinated Model NiF2 Surface
    Lindic, Tilen
    Paulus, Beate
    MATERIALS, 2024, 17 (09)
  • [36] Phase Equilibrium Studies of Tetrahydrofuran (THF) + CH4, THF + CO2, CH4 + CO2, and THF + CO2 + CH4 Hydrates
    Lee, Yun-Je
    Kawamura, Taro
    Yamamoto, Yoshitaka
    Yoon, Ji-Ho
    JOURNAL OF CHEMICAL AND ENGINEERING DATA, 2012, 57 (12): : 3543 - 3548
  • [37] Kerogen deformation upon CO2/CH4 competitive sorption: Implications for CO2 sequestration and enhanced CH4 recovery
    Huang, Liang
    Ning, Zhengfu
    Wang, Qing
    Qi, Rongrong
    Cheng, Zhilin
    Wu, Xiaojun
    Zhang, Wentong
    Qin, Huibo
    JOURNAL OF PETROLEUM SCIENCE AND ENGINEERING, 2019, 183
  • [38] Experimental study on reduction of NO by CH4 reburning in O2/CO2
    Xie, Fang
    Zhang, Jun
    Sheng, Chang-Dong
    Zhang, Yong-Chun
    Chen, Jie
    Kung Cheng Je Wu Li Hsueh Pao/Journal of Engineering Thermophysics, 2010, 31 (09): : 1599 - 1602
  • [39] Enhanced CH4 recovery and CO2 storage via thermal stimulation in the CH4/CO2 replacement of methane hydrate
    Zhang, Lunxiang
    Yang, Lei
    Wang, Jiaqi
    Zhao, Jiafei
    Dong, Hongsheng
    Yang, Mingjun
    Liu, Yu
    Song, Yongchen
    CHEMICAL ENGINEERING JOURNAL, 2017, 308 : 40 - 49
  • [40] Solubility of CO2 and CH4 in Ionic Liquids: Ideal CO2/CH4 Selectivity
    Ramdin, Mahinder
    Amplianitis, Aris
    Bazhenov, Stepan
    Volkov, Alexey
    Volkov, Vladimir
    Vlugt, Thijs J. H.
    de Loos, Theo W.
    INDUSTRIAL & ENGINEERING CHEMISTRY RESEARCH, 2014, 53 (40) : 15427 - 15435