High oxygen-reduction activity and durability of nitrogen-doped graphene

被引:1128
|
作者
Geng, Dongsheng [1 ]
Chen, Ying [1 ]
Chen, Yougui [1 ]
Li, Yongliang [1 ]
Li, Ruying [1 ]
Sun, Xueliang [1 ]
Ye, Siyu [2 ]
Knights, Shanna [2 ]
机构
[1] Univ Western Ontario, Dept Mech & Mat Engn, London, ON N6A 5B9, Canada
[2] Ballard Power Syst Inc, Burnaby, BC V5J 5J8, Canada
基金
加拿大自然科学与工程研究理事会; 加拿大创新基金会;
关键词
HIGH ELECTROCATALYTIC ACTIVITY; FUEL-CELLS; CARBON; CATALYSTS; ELECTRODE; GRAPHITE; ARRAYS; SITU;
D O I
10.1039/c0ee00326c
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Nitrogen-doped graphene as a metal-free catalyst for oxygen reduction was synthesized by heat-treatment of graphene using ammonia. It was found that the optimum temperature was 900 degrees C. The resulting catalyst had a very high oxygen reduction reaction (ORR) activity through a four-electron transfer process in oxygen-saturated 0.1 M KOH. Most importantly, the electrocatalytic activity and durability of this material are comparable or better than the commercial Pt/C (loading: 4.85 mu g(Pt) cm(-2)). XPS characterization of these catalysts was tested to identify the active N species for ORR.
引用
收藏
页码:760 / 764
页数:5
相关论文
共 50 条
  • [31] Nitrogen-doped activated graphene/SWCNT hybrid for oxygen reduction reaction
    Duy Tho Pham
    Li, Bing
    Lee, Young Hee
    CURRENT APPLIED PHYSICS, 2016, 16 (09) : 1242 - 1249
  • [32] Mechanisms of Oxygen Reduction Reaction on Nitrogen-Doped Graphene for Fuel Cells
    Zhang, Lipeng
    Xia, Zhenhai
    JOURNAL OF PHYSICAL CHEMISTRY C, 2011, 115 (22): : 11170 - 11176
  • [33] On the mechanism of enhanced oxygen reduction reaction in nitrogen-doped graphene nanoribbons
    Kim, Heejin
    Lee, Kirak
    Woo, Seong Ihl
    Jung, Yousung
    PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 2011, 13 (39) : 17505 - 17510
  • [34] Bonding state and defects of nitrogen-doped graphene in oxygen reduction reaction
    Okada, Takeru
    Inoue, Kumi Y.
    Kalita, Golap
    Tanemura, Masaki
    Matsue, Tomokazu
    Meyyappan, M.
    Samukawa, Seiji
    CHEMICAL PHYSICS LETTERS, 2016, 665 : 117 - 120
  • [35] A Hierarchical Nanoporous PtCu Alloy as an Oxygen-Reduction Reaction Electrocatalyst with High Activity and Durability
    Xu, Caixia
    Zhang, Huan
    Hao, Qin
    Duan, Huimei
    CHEMPLUSCHEM, 2014, 79 (01): : 107 - 113
  • [36] Preparation of nitrogen-doped graphene by high-gravity technology and its application in oxygen reduction
    Tian, Jie
    Gao, Fei
    Yu, Xiangqian
    Wu, Wei
    Meng, Hong
    PARTICUOLOGY, 2017, 34 : 110 - 117
  • [37] Nitrogen-Doped Ordered Mesoporous Graphitic Arrays with High Electrocatalytic Activity for Oxygen Reduction
    Liu, Ruili
    Wu, Dongqing
    Feng, Xinliang
    Muellen, Klaus
    ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2010, 49 (14) : 2565 - 2569
  • [38] Nitrogen-doped hollow macroporous carbon spheres with high electrocatalytic activity for oxygen reduction
    Zheng, Fei
    Mu, Guiqin
    Zhang, Zhiming
    Shen, Yaou
    Zhao, Maojun
    Pang, Guangtang
    MATERIALS LETTERS, 2012, 68 : 453 - 456
  • [39] On the electrocatalytic activity of nitrogen-doped reduced graphene Oxide: Does the nature of nitrogen really control the activity towards oxygen reduction?
    Bag, Sourav
    Raj, C. Retna
    JOURNAL OF CHEMICAL SCIENCES, 2016, 128 (03) : 339 - 347
  • [40] On the electrocatalytic activity of nitrogen-doped reduced graphene Oxide: Does the nature of nitrogen really control the activity towards oxygen reduction?
    SOURAV BAG
    C RETNA RAJ
    Journal of Chemical Sciences, 2016, 128 : 339 - 347