Quantum Hall effect in semiconductor systems with quantum dots and antidots

被引:2
|
作者
Beltukov, Ya M. [1 ]
Greshnov, A. A. [1 ,2 ]
机构
[1] Russian Acad Sci, Ioffe Phys Tech Inst, St Petersburg 194021, Russia
[2] St Petersburg State Electrotech Univ LETI, St Petersburg 197376, Russia
基金
俄罗斯基础研究基金会;
关键词
MAGNETIC-FIELD; STATES; INAS;
D O I
10.1134/S1063782615040077
中图分类号
O469 [凝聚态物理学];
学科分类号
070205 ;
摘要
The integer quantum Hall effect in systems of semiconductor quantum dots and antidots is studied theoretically as a factor of temperature. It is established that the conditions for carrier localization in quantum-dot systems favor the observation of the quantum Hall effect at higher temperatures than in quantum-well systems. The obtained numerical results show that the fundamental plateau corresponding to the transition between the ground and first excited Landau levels can be retained up to a temperature of T similar to 50 K, which is an order of magnitude higher than in the case of quantum wells. Implementation of the quantum Hall effect at such temperatures requires quantum-dot systems with controllable characteristics, including the optimal size and concentration and moderate geometrical and composition fluctuations. In addition, ordered arrangement is desirable, hence quantum antidots are preferable.
引用
收藏
页码:483 / 491
页数:9
相关论文
共 50 条
  • [31] THz quantum-confined Stark effect in semiconductor quantum dots
    Turchinovich, Dmitry
    Monozon, Boris S.
    Livshits, Daniil A.
    Rafailov, Edik U.
    Hoffmann, Matthias C.
    ULTRAFAST PHENOMENA AND NANOPHOTONICS XVI, 2012, 8260
  • [32] Quantum Zeno Effect Rationalizes the Phonon Bottleneck in Semiconductor Quantum Dots
    Kilina, Svetlana V.
    Neukirch, Amanda J.
    Habenicht, Bradley F.
    Kilin, Dmitri S.
    Prezhdo, Oleg V.
    PHYSICAL REVIEW LETTERS, 2013, 110 (18)
  • [33] Coulomb Oscillations in Antidots in the Integer and Fractional Quantum Hall Regimes
    Kou, A.
    Marcus, C. M.
    Pfeiffer, L. N.
    West, K. W.
    PHYSICAL REVIEW LETTERS, 2012, 108 (25)
  • [34] Erratum: Parity effect of bipolar quantum Hall edge transport around graphene antidots
    Sadashige Matsuo
    Shu Nakaharai
    Katsuyoshi Komatsu
    Kazuhito Tsukagoshi
    Takahiro Moriyama
    Teruo Ono
    Kensuke Kobayashi
    Scientific Reports, 5
  • [35] Hall effect in hopping conduction in an ensemble of quantum dots
    N. P. Stepina
    A. V. Nenashev
    A. V. Dvurechenskii
    JETP Letters, 2017, 106 : 308 - 312
  • [36] Hall effect in hopping conduction in an ensemble of quantum dots
    Stepina, N. P.
    Nenashev, A. V.
    Dvurechenskii, A. V.
    JETP LETTERS, 2017, 106 (05) : 308 - 312
  • [37] Electrical transport phenomena in systems of semiconductor quantum dots
    Balberg, Isaac
    JOURNAL OF NANOSCIENCE AND NANOTECHNOLOGY, 2008, 8 (02) : 745 - 758
  • [38] Semiconductor Quantum Dots for Memories and Neuromorphic Computing Systems
    Lv, Ziyu
    Wang, Yan
    Chen, Jingrui
    Wang, Junjie
    Zhou, Ye
    Han, Su-Ting
    CHEMICAL REVIEWS, 2020, 120 (09) : 3941 - 4006
  • [39] Application of semiconductor quantum dots for a study of biological systems
    Zegrya, G. G.
    Bazhenov, N. L.
    Mynbaev, K. D.
    Pokutnyi, S. I.
    CAS 2005: INTERNATIONAL SEMICONDUCTOR CONFERENCE, 2005, 1-2 : 73 - 76
  • [40] Optical properties of quantum dots versus quantum antidots: Effects of hydrostatic pressure and temperature
    Y. Naimi
    A. R. Jafari
    Journal of Computational Electronics, 2014, 13 : 666 - 672