Topological dynamics of 2D cellular automata

被引:4
|
作者
Sablik, Mathieu [1 ,2 ]
Theyssier, Guillaume [3 ]
机构
[1] Ecole Normale Super Lyon, CNRS, UMR 5669, UMPA, 46 Allee Italie, F-69364 Lyon, France
[2] Univ Aix Marseille 1, CMI, CNRS, LATP,UMR 6632, F-13453 Marseille, France
[3] Universite Savoie, CNRS, LAMA, UMR 5127, F-73376 Le Bourget Du Lac, France
来源
关键词
D O I
10.1007/978-3-540-69407-6_56
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
Topological dynamics of cellular automata (CA), inherited from classical dynamical systems theory, has been essentially studied in dimension 1. This paper focuses on 2D CA and aims at showing that the situation is different and more complex. The main results are the existence of non sensitive CA without equicontinuous points, the nonrecursivity of sensitivity constants and the existence of CA having only non-recursive equicontinuous points. They all show a difference between the 1D and the 2D case. Thanks to these new constructions, we also extend undecidability results concerning topological classification previously obtained in the ID case.
引用
收藏
页码:523 / +
页数:2
相关论文
共 50 条
  • [1] On the Dynamics of a Family of 2D Finite Cellular Automata
    Severino, Ricardo
    Leitao, Ana Maria
    Alves, Maria Joao
    COMPUTATIONAL SCIENCE AND ITS APPLICATIONS-ICCSA 2024 WORKSHOPS, PT XI, 2024, 14825 : 263 - 273
  • [2] Dynamics of HIV infection on 2D cellular automata
    Benyoussef, A
    El HafidAllah, N
    ElKenz, A
    Ez-Zahraouy, H
    Loulidi, M
    PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2003, 322 (1-4) : 506 - 520
  • [3] Topological dynamics of cellular automata
    Kurka, P
    CODES, SYSTEMS, AND GRAPHICAL MODELS, 2001, 123 : 447 - 485
  • [4] Simulating 3D cellular automata with 2D cellular automata
    Poupet, V
    MATHEMATICAL FOUNDATIONS OF COMPUTER SCIENCE 2004, PROCEEDINGS, 2004, 3153 : 439 - 450
  • [5] Analysing Emergent Dynamics of Evolving Computation in 2D Cellular Automata
    McCaskill, John S.
    Packard, Norman H.
    THEORY AND PRACTICE OF NATURAL COMPUTING, TPNC 2019, 2019, 11934 : 3 - 40
  • [6] Topological dynamics of Nondeterministic Cellular Automata
    Di Lena, Pietro
    INFORMATION AND COMPUTATION, 2020, 274
  • [7] Topological dynamics of Nondeterministic Cellular Automata
    Di Lena, Pietro
    Information and Computation, 2020, 274
  • [8] Decidable Properties of 2D Cellular Automata
    Dennunzio, Alberto
    Formenti, Enrico
    DEVELOPMENTS IN LANGUAGE THEORY, PROCEEDINGS, 2008, 5257 : 264 - +
  • [9] REVERSIBILITY OF 2D CELLULAR AUTOMATA IS UNDECIDABLE
    KARI, J
    PHYSICA D, 1990, 45 (1-3): : 379 - 385
  • [10] Evolution of 2D Apoptotic Cellular Automata
    Garner, Jennifer
    Ashlock, Daniel
    2015 IEEE CONGRESS ON EVOLUTIONARY COMPUTATION (CEC), 2015, : 2160 - 2167