Resampled quantile functions for error estimation and a relationship to density estimation

被引:1
|
作者
LeBlanc, M [1 ]
机构
[1] Fred Hutchinson Canc Res Ctr, Seattle, WA 98109 USA
基金
美国国家卫生研究院;
关键词
D O I
10.1016/S0167-9473(98)00071-1
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
Non-parametric resampling of the data can be useful for variance estimation and constructing confidence intervals for quantiles. Parzen et al. (1994, Biometrika, 81, 341-350) develop a technique based on resampling estimating equations that can avoid non-parametric functional estimates required to use traditional large sample variance formulas. We show that while their resampling based variance formulas ape "automatic", their performance may also be improved by adjusting the variance of the resampling mechanism. This is shown to directly relate to the usual problem of needing to adjust the span of a non-parametric density estimate used with the standard asymptotic formula to estimate standard errors for quantiles. In addition, we examine the density estimate that is obtained by the resampling method. (C) 1999 Elsevier Science B.V. All rights reserved.
引用
收藏
页码:163 / 176
页数:14
相关论文
共 50 条
  • [41] ESTIMATION OF QUANTILE DENSITY-FUNCTION BASED ON REGRESSION QUANTILES
    DODGE, Y
    JURECKOVA, J
    STATISTICS & PROBABILITY LETTERS, 1995, 23 (01) : 73 - 78
  • [42] NOTE ON ESTIMATION OF PROBABILITY DENSITY FUNCTIONS
    MURRAY, GD
    BIOMETRIKA, 1977, 64 (01) : 150 - 152
  • [43] BOUNDS FOR ESTIMATION OF DENSITY FUNCTIONS AND THEIR DERIVATIVES
    MEYER, TG
    ANNALS OF STATISTICS, 1977, 5 (01): : 136 - 142
  • [44] Estimation of sparse functional quantile regression with measurement error: a SIMEX approach
    Tekwe, Carmen D.
    Zhang, Mengli
    Carroll, Raymond J.
    Luan, Yuanyuan
    Xue, Lan
    Zoh, Roger S.
    Carter, Stephen J.
    Allison, David B.
    Geraci, Marco
    BIOSTATISTICS, 2022, 23 (04) : 1218 - 1241
  • [45] Discriminatory Power of Heterogeneity Statistics with Respect to Error of Precipitation Quantile Estimation
    Wright, Michael J.
    Houck, Mark. H.
    Ferreira, Celso M.
    JOURNAL OF HYDROLOGIC ENGINEERING, 2015, 20 (10)
  • [46] Estimation of distribution functions in measurement error models
    Dattner, I.
    Reiser, B.
    JOURNAL OF STATISTICAL PLANNING AND INFERENCE, 2013, 143 (03) : 479 - 493
  • [47] Nonparametric quantile estimation
    Takeuchi, Ichiro
    Le, Quoc V.
    Sears, Timothy D.
    Smola, Alexander J.
    JOURNAL OF MACHINE LEARNING RESEARCH, 2006, 7 : 1231 - 1264
  • [48] On quantile estimation by bootstrap
    Brodin, E
    COMPUTATIONAL STATISTICS & DATA ANALYSIS, 2006, 50 (06) : 1398 - 1406
  • [49] Quantile and histogram estimation
    Chen, EJ
    Kelton, WD
    WSC'01: PROCEEDINGS OF THE 2001 WINTER SIMULATION CONFERENCE, VOLS 1 AND 2, 2001, : 451 - 459
  • [50] Quantile Sensitivity Estimation
    Heidergott, Bernd
    Volk-Makarewicz, Warren
    NETWORK CONTROL AND OPTIMIZATION, PROCEEDINGS, 2009, 5894 : 16 - 29