State of charge estimation of li-ion batteries based on the noise-adaptive interacting multiple model

被引:15
|
作者
Huang, Ce [1 ,2 ]
Yu, Xiaoyang [1 ,2 ]
Wang, Yongchao [3 ]
Zhou, Yongqin [3 ]
Li, Ran [3 ]
机构
[1] Harbin Univ Sci & Technol, Higher Educ Key Lab Measuring & Control Technol &, Harbin 150080, Peoples R China
[2] Harbin Univ Sci & Technol, Sch Measurement & Commun Engn, Harbin 150080, Peoples R China
[3] Harbin Univ Sci & Technol, Sch Elect & Elect Engn, Harbin 150080, Peoples R China
关键词
SOC estimation; Interacting multiple model; Noise adaptive; Unscented Kalman filter; EQUIVALENT-CIRCUIT MODEL; UNSCENTED KALMAN FILTER; OF-CHARGE; TRACKING; ALGORITHM;
D O I
10.1016/j.egyr.2021.09.002
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
This paper presents a type of noise-adaptive (NA) interacting multiple model (IMM) algorithm combined with an unscented Kalman filter (UKF) in order to address problems in poor filtering accuracy and filtering divergence of IMM caused by the statistical properties of noise. These properties further affect the estimation accuracy of state of charge (SOC) when IMM deals with dynamic changes in battery model parameters. Accordingly, the proposed algorithm can realize the accurate estimation of SOC when model parameters change dynamically and when the statistical properties of noise are unknown. By integrating a Sage-Husa noise estimator, NA-IMM-UKF enabled the whole UKF model set to estimate and correct noise information in real time in order for posteriori and unknown noise information to be adjusted adaptively. At the same time, a forgetting factor was introduced in order to optimize the proposed algorithm, thus improving the problem in which the Sage-Husa noise estimator converges slowly when used in conjunction with UKF. By conducting an experiment and simulation, NA-IMM-UKF was shown to carry out SOC estimation under multiple models, with an average error of only 0.4% and maximum error of only 1.08%. However, by comparing the estimated result of SOC under a single model with the Sage-Husa estimator minus the forgetting factor, the average error dropped by 0.15% while the maximum error decreased by 2.78%. In the final noise comparison experiment, following the addition of unknown random noise, the average error of the NA-IMM-UKF algorithm was found to be only 0.48%, while the maximum error was only 1.51%, far surpassing the estimation results of the IMM-UKF algorithm in the same state. As a result, even if the statistical properties of noise are uncertain, the proposed algorithm can still estimate SOC both accurately and effectively. (C) 2021 The Authors. Published by Elsevier Ltd.
引用
收藏
页码:8152 / 8161
页数:10
相关论文
共 50 条
  • [41] Deep Learning in the State of Charge Estimation for Li-Ion Batteries of Electric Vehicles: A Review
    Zhang, Dawei
    Zhong, Chen
    Xu, Peijuan
    Tian, Yiyang
    MACHINES, 2022, 10 (10)
  • [42] State of charge estimation for Li-ion battery based intelligent algorithms
    Degla, Aicha
    Chikh, Madjid
    Mzir, Mahdi
    Belabed, Youcef
    ELECTRICAL ENGINEERING, 2023, 105 (02) : 1179 - 1197
  • [43] State of charge estimation for Li-ion battery based intelligent algorithms
    Aicha Degla
    Madjid Chikh
    Mahdi Mzir
    Youcef Belabed
    Electrical Engineering, 2023, 105 : 1179 - 1197
  • [44] State-of-Charge Estimation of Li-ion Batteries Based on A Hybrid Model Using Nonlinear Autoregressive Exogenous Neural Networks
    Zhang, Yuxiang
    Zhao, Chunyu
    Zhu, Senlin
    2018 IEEE PES ASIA-PACIFIC POWER AND ENERGY ENGINEERING CONFERENCE (APPEEC), 2018,
  • [45] State of Charge (SOC) Estimation of Li-Ion Battery
    Saboo, Krishna
    Mangsule, Rucha
    Deshpande, Amruta S.
    2021 INTERNATIONAL CONFERENCE ON EMERGING SMART COMPUTING AND INFORMATICS (ESCI), 2021, : 340 - 345
  • [46] State of charge estimation for a Li-ion driving battery
    Zhang, Hua-Hui
    Qi, Bo-Jin
    Pang, Jing
    Wu, Hong-Jie
    Harbin Gongcheng Daxue Xuebao/Journal of Harbin Engineering University, 2009, 30 (06): : 669 - 675
  • [47] Li-ion Battery Parameter Estimation for State of Charge
    Tang, Xidong
    Mao, Xiaofeng
    Lin, Jian
    Koch, Brian
    2011 AMERICAN CONTROL CONFERENCE, 2011, : 941 - 946
  • [48] Kalman filtering techniques for the online model parameters and state of charge estimation of the Li-ion batteries: A comparative analysis
    Hossain, M.
    Haque, M. E.
    Arif, M. T.
    JOURNAL OF ENERGY STORAGE, 2022, 51
  • [49] An Approach for State of Charge Estimation of Li-ion Battery Based on Thevenin Equivalent Circuit model
    Chen, Bing
    Ma, Haodong
    Fang, Hongzheng
    Fan, Huanzhen
    Luo, Kai
    Fan, Bin
    PROCEEDINGS OF 2014 PROGNOSTICS AND SYSTEM HEALTH MANAGEMENT CONFERENCE (PHM-2014 HUNAN), 2014, : 647 - 652
  • [50] State of charge estimation for Li-ion battery based on model from extreme learning machine
    Du, Jiani
    Liu, Zhitao
    Wang, Youyi
    CONTROL ENGINEERING PRACTICE, 2014, 26 : 11 - 19