Anomaly detection from hyperspectral imagery

被引:555
|
作者
Stein, DWJ [1 ]
Beaven, SG
Hoff, LE
Winter, EM
Schaum, AP
Stocker, AD
机构
[1] SPAWAR Syst Ctr, San Diego, CA USA
[2] Naval Res Lab, Washington, DC USA
[3] Space Comp Corp, Los Angeles, CA USA
关键词
D O I
10.1109/79.974730
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Anomaly detectors for hyperspectral data were developed based on fundamental detection theoretic principles, including the generalized likelihood ratio test (GLRT) and approximations thereof. As such, the underlying theory for the application of anomaly detection to systems with inherently high dimensionality was outlined. It was shown that the performance improves with SNR depends on the characteristics of the targets, clutter, environment, and sensor.
引用
收藏
页码:58 / 69
页数:12
相关论文
共 50 条
  • [31] Progressive Band Processing of Anomaly Detection in Hyperspectral Imagery
    Chang, Chein-I
    Li, Yao
    Hobbs, Marissa C.
    Schultz, Robert C.
    Liu, Wei-Min
    IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, 2015, 8 (07) : 3558 - 3571
  • [32] ANOMALY DETECTION BASED ON QUADRATIC MODELING OF HYPERSPECTRAL IMAGERY
    Zhong, Shengwei
    Zhang, Ye
    2016 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS), 2016, : 5864 - 5867
  • [33] The Impacts of Decomposition Levels in Wavelet Transform on Anomaly Detection from Hyperspectral Imagery
    Yoo, Hee Young
    Park, No-Wook
    KOREAN JOURNAL OF REMOTE SENSING, 2012, 28 (06) : 623 - 632
  • [34] Parallel and Distributed Computing for Anomaly Detection From Hyperspectral Remote Sensing Imagery
    Du, Qian
    Tang, Bo
    Xie, Weiying
    Li, Wei
    PROCEEDINGS OF THE IEEE, 2021, 109 (08) : 1306 - 1319
  • [35] Spectral Adversarial Feature Learning for Anomaly Detection in Hyperspectral Imagery
    Xie, Weiying
    Liu, Baozhu
    Li, Yunsong
    Lei, Jie
    Chang, Chein-, I
    He, Gang
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2020, 58 (04): : 2352 - 2365
  • [36] Kernel ICA Feature Extraction for Anomaly Detection in Hyperspectral Imagery
    Zhao Chunhui
    Wang Yulei
    Mei Feng
    CHINESE JOURNAL OF ELECTRONICS, 2012, 21 (02): : 265 - 269
  • [37] Anomaly Detection in Hyperspectral Imagery based on Spectral Gradient and LLE
    Wang, Liangliang
    Li, Zhiyong
    Sun, Jixiang
    FRONTIERS OF MANUFACTURING AND DESIGN SCIENCE II, PTS 1-6, 2012, 121-126 : 720 - 724
  • [38] Anomaly Detection of Hyperspectral Imagery Using Modified Collaborative Representation
    Vafadar, Maryam
    Ghassemian, Hassan
    IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2018, 15 (04) : 577 - 581
  • [39] Consensus Anomaly Detection Using Clustering Methods in Hyperspectral imagery
    Amiel, Yoav
    Frajman, Adar
    Rotman, Stanley R.
    IMAGING SPECTROMETRY XXIV: APPLICATIONS, SENSORS, AND PROCESSING, 2020, 11504
  • [40] Adaptive anomaly detection using subspace separation for hyperspectral imagery
    Kwon, HS
    Der, SZ
    Nasrabadi, NM
    OPTICAL ENGINEERING, 2003, 42 (11) : 3342 - 3351