LOFAR self-calibration using a blackboard software architecture

被引:0
|
作者
Loose, G. Marcel [1 ]
机构
[1] ASTRON, NL-7990 AA Dwingeloo, Netherlands
关键词
D O I
暂无
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
One of the major challenges for the self-calibration of the new generation of radio telescopes is to handle the sheer amount of observational data. For LOFAR, an average observation consists of several tens of terabytes of data. Fortunately, many operations can be done in parallel on only part of the data. So, one way to take up this challenge is to employ a large cluster of computers and to distribute both data and computing power. This paper focuses on the architectural design of the LOFAR self-calibration system, which is loosely based on the Blackboard architectural pattern. Key design consideration was to provide maximum scalability by complete separation of the global controller-issuing sequences of commands-on the one side; and the local controllers-controlling the so-called 'kernels' that execute the commands-on the other side. In between, resides a database system that acts as a shared memory for the global and local controllers by storing the commands and the results.
引用
收藏
页码:91 / 94
页数:4
相关论文
共 50 条
  • [1] Self-calibration for the LOFAR radio astronomical array
    van der Tol, Sebastiaan
    Jeffs, Brian D.
    van der Veen, Alle-Jan
    IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2007, 55 (09) : 4497 - 4510
  • [2] LOFAR observations of galaxy clusters in HETDEX: Extraction and self-calibration of individual LOFAR targets
    van Weeren, R. J.
    Shimwell, T. W.
    Botteon, A.
    Brunetti, G.
    Brueggen, M.
    Boxelaar, J. M.
    Cassano, R.
    Di Gennaro, G.
    Andrade-Santos, F.
    Bonnassieux, E.
    Bonafede, A.
    Cuciti, V.
    Dallacasa, D.
    de Gasperin, F.
    Gastaldello, F.
    Hardcastle, M. J.
    Hoeft, M.
    Kraft, R. P.
    Mandal, S.
    Rossetti, M.
    Roettgering, H. J. A.
    Tasse, C.
    Wilber, A. G.
    ASTRONOMY & ASTROPHYSICS, 2021, 651
  • [3] Self-calibration strategy for a LOFAR solar radio burst observation
    Vocks, C.
    Mann, G.
    Breitling, F.
    ASTRONOMISCHE NACHRICHTEN, 2016, 337 (10) : 1099 - 1104
  • [4] Stochastic TDC Architecture with Self-Calibration
    Ito, Satoshi
    Nishimura, Shigeyuki
    Kobayashi, Haruo
    Uemori, Satoshi
    Tan, Yohei
    Takai, Nobukazu
    Yamaguchi, Takahiro J.
    Niitsu, Kiichi
    PROCEEDINGS OF THE 2010 IEEE ASIA PACIFIC CONFERENCE ON CIRCUIT AND SYSTEM (APCCAS), 2010, : 1027 - 1030
  • [5] IMU Self-Calibration Using Factorization
    Hwangbo, Myung
    Kim, Jun-Sik
    Kanade, Takeo
    IEEE TRANSACTIONS ON ROBOTICS, 2013, 29 (02) : 493 - 507
  • [6] Self-calibration
    Cornwell, T
    Fomalont, EB
    SYNTHESIS IMAGING IN RADIO ASTRONOMY II, 1999, 180 : 187 - 199
  • [7] SELF-CALIBRATION
    CORNWELL, T
    FOMALONT, EB
    SYNTHESIS IMAGING IN RADIO ASTRONOMY, 1989, 6 : 185 - 197
  • [8] SAR TDC Architecture With Self-Calibration Employing Trigger Circuit
    Ozawa, Yuki
    Ida, Takashi
    Jiang, Richen
    Sakurai, Shotaro
    Takigami, Seiya
    Tsukiji, Nobukazu
    Shiota, Ryoji
    Kobayashi, Haruo
    2017 IEEE 26TH ASIAN TEST SYMPOSIUM (ATS), 2017, : 90 - 95
  • [9] Self-calibration using constant camera motion
    Cao, Xiaochun
    Xiao, Jiangjian
    Foroosh, Hassan
    18TH INTERNATIONAL CONFERENCE ON PATTERN RECOGNITION, VOL 1, PROCEEDINGS, 2006, : 595 - +
  • [10] Image Mosaicing Using a Self-Calibration Camera
    Baataoui, A.
    Laraqui, A.
    Saaidi, A.
    Satori, K.
    Jarrar, A.
    Masrar, Med.
    3D RESEARCH, 2015, 6 (02):