A GOAL-ORIENTED ADAPTIVE FINITE ELEMENT METHOD WITH CONVERGENCE RATES

被引:38
|
作者
Mommer, Mario S. [1 ]
Stevenson, Rob [2 ]
机构
[1] Univ Heidelberg, Interdisciplinary Ctr Sci Comp IWR, D-69120 Heidelberg, Germany
[2] Univ Amsterdam, Korteweg de Vries Inst Math, NL-1018 TV Amsterdam, Netherlands
关键词
adaptive finite element method; convergence rates; computational complexity; quantity of interest; a posteriori error estimators; STOKES PROBLEM; ALGORITHM; REFINEMENT; BISECTION; FEM;
D O I
10.1137/060675666
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
An adaptive finite element method is analyzed for approximating functionals of the solution of symmetric elliptic second order boundary value problems. We show that the method converges and derive a favorable upper bound for its convergence rate and computational complexity. We illustrate our theoretical findings with numerical results.
引用
收藏
页码:861 / 886
页数:26
相关论文
共 50 条
  • [1] Goal-oriented adaptive finite element multilevel Monte Carlo with convergence rates
    Beck, Joakim
    Liu, Yang
    von Schwerin, Erik
    Tempone, Raul
    COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2022, 402
  • [2] Convergence of goal-oriented adaptive finite element methods for semilinear problems
    Holst, Michael
    Pollock, Sara
    Zhu, Yunrong
    COMPUTING AND VISUALIZATION IN SCIENCE, 2015, 17 (01) : 43 - 63
  • [3] Convergence of goal-oriented adaptive finite element methods for nonsymmetric problems
    Holst, Michael
    Pollock, Sara
    NUMERICAL METHODS FOR PARTIAL DIFFERENTIAL EQUATIONS, 2016, 32 (02) : 479 - 509
  • [4] A new goal-oriented formulation of the finite element method
    Kergrene, Kenan
    Prudhomme, Serge
    Chamoin, Ludovic
    Laforest, Marc
    COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2017, 327 : 256 - 276
  • [5] WEIGHTED MARKING FOR GOAL-ORIENTED ADAPTIVE FINITE ELEMENT METHODS
    Becker, Roland
    Estecahandy, Elodie
    Trujillo, David
    SIAM JOURNAL ON NUMERICAL ANALYSIS, 2011, 49 (06) : 2451 - 2469
  • [6] Multilevel correction goal-oriented adaptive finite element method for semilinear elliptic equations
    Xu, Fei
    Huang, Qiumei
    Yang, Huiting
    Ma, Hongkun
    APPLIED NUMERICAL MATHEMATICS, 2022, 172 : 224 - 241
  • [7] Goal-oriented error estimation and adaptivity for the finite element method
    Oden, JT
    Prudhomme, S
    COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2001, 41 (5-6) : 735 - 756
  • [8] Plain convergence of goal-oriented adaptive FEM *
    Helml, Valentin
    Innerberger, Michael
    Praetorius, Dirk
    COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2023, 147 : 130 - 149
  • [9] Goal-oriented adaptive finite element methods with optimal computational complexity
    Becker, Roland
    Gantner, Gregor
    Innerberger, Michael
    Praetorius, Dirk
    NUMERISCHE MATHEMATIK, 2023, 153 (01) : 111 - 140
  • [10] Goal-oriented adaptive finite element methods with optimal computational complexity
    Roland Becker
    Gregor Gantner
    Michael Innerberger
    Dirk Praetorius
    Numerische Mathematik, 2023, 153 : 111 - 140