Dirichlet problem with p(x)-Laplacian

被引:0
|
作者
Ilias, Petre Sorin [1 ]
机构
[1] Univ Bucharest, Fac Math & Comp Sci, Bucharest 010014, Romania
来源
MATHEMATICAL REPORTS | 2008年 / 10卷 / 01期
关键词
p(x)-laplacian; generalized Lebesgue-Sobolev space; critical points; surjectivity theorem;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We give several sufficient conditions for the existence of weak solutions for the Dirichlet problem with p(x)-laplacian { -Delta(p(x))u = f(x, u) in Omega u = 0 on partial derivative Omega, where Omega is a bounded domain in R-N, p(x) a continuous function defined on (Omega) over bar with p(x) > 1 for all x epsilon (Omega) over bar and f : Omega x R -> R a Caratheodory function.
引用
收藏
页码:43 / 56
页数:14
相关论文
共 50 条