Comparison of Two Approaches to Modeling Atmospheric Aerosol Particle Size Distributions

被引:0
|
作者
Zdimal, Vladimir [1 ]
Brabec, Marek [2 ,3 ]
Wagner, Zdenek [4 ]
机构
[1] Acad Sci Czech Republic, Inst Chem Proc Fundamentals, Lab Aerosol Chem & Phys, CR-16502 Prague 6, Czech Republic
[2] Natl Inst Publ Hlth, Dept Biostat & Informat, Prague 10042 10, Czech Republic
[3] Inst Comp Sci, Dept Nonlinear Modeling, Prague 18207 8, Czech Republic
[4] Acad Sci Czech Republic, Inst Chem Proc Fundamentals, E Hala Lab Thermodynam, CR-16502 Prague 6, Czech Republic
关键词
Particle size distribution; Lognormal mixture; Semiparametric modeling; Nonparametric modeling; Gnostic theory of uncertain data;
D O I
暂无
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
This paper compares two approaches to modeling (smoothing) aerosol particle size distribution (particle counts for specified diameter intervals): i) the semiparametric approach based on a maximum likelihood fitting of lognormal (LN) mixtures at each time separately, followed by smoothing parameter tracks, ii) the nonparametric approach based on a kernel-like smoothing as an application of the gnostic theory of uncertain data. The specific advantages and disadvantages of both the serniparametric and nonparametric approaches are discussed and illustrated using real data containing a day-long time series of size spectra measurements.
引用
收藏
页码:392 / 410
页数:19
相关论文
共 50 条
  • [21] Assessment of particle size distributions in workers' aerosol exposures
    Ramachandran, G
    Werner, MA
    Vincent, JH
    ANALYST, 1996, 121 (09) : 1225 - 1232
  • [22] EVOLUTION OF ATMOSPHERIC AEROSOL-PARTICLE SIZE DISTRIBUTIONS VIA BROWNIAN COAGULATION - NUMERICAL-SIMULATION
    SUCK, SH
    BROCK, JR
    JOURNAL OF AEROSOL SCIENCE, 1979, 10 (06) : 581 - 590
  • [23] Size distributions and vertical distributions of water soluble ions of atmospheric aerosol in Beijing
    Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing 100029, China
    不详
    Huanjing Kexue, 2007, 1 (14-19):
  • [24] A machine learning approach for predicting atmospheric aerosol size distributions
    Rudiger, Joshua J.
    Book, Kevin
    degrassie, John Stephen
    Hammel, Stephen
    Baker, Brooke
    LASER COMMUNICATION AND PROPAGATION THROUGH THE ATMOSPHERE AND OCEANS VI, 2017, 10408
  • [25] Size distributions of inorganic and organic species in the atmospheric aerosol in Hungary
    Meszaros, E
    Barcza, T
    Gelencser, A
    Hlavay, J
    Kiss, G
    Krivacsy, Z
    Molnar, A
    Polyak, K
    JOURNAL OF AEROSOL SCIENCE, 1997, 28 (07) : 1163 - 1175
  • [26] Modeling the atmospheric aerosol at the single particle level.
    Kleeman, MJ
    Cass, GR
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 1999, 217 : U146 - U146
  • [27] A Method to Generate Experimental Aerosol with Similar Particle Size Distribution to Atmospheric Aerosol
    Ren, Jianlin
    He, Junjie
    Li, Jiayu
    Liu, Junjie
    ATMOSPHERE, 2021, 12 (12)
  • [28] Bayesian mixture model estimation of aerosol particle size distributions
    Wraith, D.
    Alston, C.
    Mengersen, K.
    Hussein, T.
    ENVIRONMETRICS, 2011, 22 (01) : 23 - 34
  • [29] A PRINCIPLE OF SIMILARITY FOR DESCRIBING AEROSOL-PARTICLE SIZE DISTRIBUTIONS
    EPSTEIN, M
    ELLISON, PG
    JOURNAL OF COLLOID AND INTERFACE SCIENCE, 1987, 119 (01) : 168 - 173
  • [30] SIMULTANEOUS MEASUREMENT OF AEROSOL-PARTICLE CHARGE AND SIZE DISTRIBUTIONS
    EMETS, EP
    KASCHEEV, VA
    POLUEKTOV, PP
    JOURNAL OF AEROSOL SCIENCE, 1991, 22 (03) : 389 - 394