Direct and Label-Free Cell Status Monitoring of Spheroids and Microcarriers Using Microfluidic Impedance Cytometry

被引:42
|
作者
Gong, Lingyan [1 ]
Petchakup, Chayakorn [1 ]
Shi, Pujiang [2 ]
Tan, Pei Leng [2 ]
Tan, Lay Poh [2 ]
Tay, Chor Yong [2 ,3 ,4 ,5 ]
Hou, Han Wei [1 ,6 ,7 ]
机构
[1] Nanyang Technol Univ, Sch Mech & Aerosp Engn, 50 Nanyang Ave, Singapore 639798, Singapore
[2] Nanyang Technol Univ, Sch Mat Sci & Engn, 50 Nanyang Ave, Singapore 639798, Singapore
[3] Nanyang Technol Univ, Sch Biol Sci, 60 Nanyang Dr, Singapore 637551, Singapore
[4] Nanyang Environm & Water Res Inst, Environm Chem & Mat Ctr, CleanTech Loop,CleanTech One, Singapore 637141, Singapore
[5] Nanyang Technol Univ Singapore, Energy Res Inst, 50 Nanyang Dr, Singapore 637553, Singapore
[6] Nanyang Technol Univ, Lee Kong Chian Sch Med, 11 Mandalay Rd, Singapore 308232, Singapore
[7] Singapore Massachusetts Inst Technol Alliance Res, Crit Analyt Mfg Personalized Med, 1 CREATE Way,10-01,CREATE Tower, Singapore 138602, Singapore
关键词
biomanufacturing; impedance cytometry; label‐ free; microfluidics; stem cell differentiation; MESENCHYMAL STEM-CELLS; FLOW-CYTOMETRY; SPECTROSCOPY; EXPANSION; MEMBRANE; CULTURE;
D O I
10.1002/smll.202007500
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
3D cellular spheroids/microcarriers (100 mu m-1 mm) are widely used in biomanufacturing, and non-invasive biosensors are useful to monitor cell quality in bioprocesses. In this work, a novel microfluidic approach for label-free and continuous-flow monitoring of single spheroid/microcarrier (hydrogel and Cytodex) based on electrical impedance spectroscopy using co-planar Field's metal electrodes is reported. Through numerical simulation and experimental validation, two unique impedance signatures (|Z(LF)| (60 kHz), |Z(HF)| (1 MHz)) which are optimal for spheroid growth and viability monitoring are identified. Using a closed-loop recirculation system, it is demonstrated that |Z(LF)| increases with breast cancer (MCF-7) spheroid biomass, while higher opacity (impedance ratio |Z(HF)|/|Z(LF)|) indicates cell death due to compromised cell membrane. Anti-cancer drug (paclitaxel)-treated spheroids also exhibit lower |Z(LF)| with increased cell dissociation. Interestingly, impedance characterization of adipose-derived mesenchymal stem cell differentiation on Cytodex microcarriers reveals that adipogenic cells (higher intracellular lipid content) exhibit higher impedance than osteogenic cells (more conductive due to calcium ions) for both microcarriers and single cell level. Taken together, the developed platform offers great versatility for multi-parametric analysis of spheroids/microcarriers at high throughput (approximate to 1 particle/s), and can be readily integrated into bioreactors for long-term and remote monitoring of biomass and cell quality.
引用
收藏
页数:11
相关论文
共 50 条
  • [1] Label-free quantitative lymphocyte activation profiling using microfluidic impedance cytometry
    Petchakup, Chayakorn
    Hutchinson, Paul Edward
    Tay, Hui Min
    Leong, Sheng Yuan
    Li, King Ho Holden
    Hou, Han Wei
    SENSORS AND ACTUATORS B-CHEMICAL, 2021, 339
  • [2] Microfluidic Impedance-Deformability Cytometry for Label-Free Single Neutrophil Mechanophenotyping
    Petchakup, Chayakorn
    Yang, Haoning
    Gong, Lingyan
    He, Linwei
    Tay, Hui Min
    Dalan, Rinkoo
    Chung, Aram J.
    Li, King Ho Holden
    Hou, Han Wei
    SMALL, 2022, 18 (18)
  • [3] Label-Free Microfluidic Impedance Cytometry for Acrosome Integrity Assessment of Boar Spermatozoa
    Kruit, Stella A.
    de Bruijn, Douwe S.
    Broekhuijse, Marleen L. W. J.
    Olthuis, Wouter
    Segerink, Loes, I
    BIOSENSORS-BASEL, 2022, 12 (09):
  • [4] Impedance spectroscopy flow cytometry: Parameters for label-free cell differentiation
    Cheung, K
    Gawad, S
    Renaud, P
    Micro Total Analysis Systems 2004, Vol 1, 2005, (296): : 55 - 57
  • [5] Microscope-based label-free microfluidic cytometry
    Su, Xuantao
    Kirkwood, Sean E.
    Gupta, Manisha
    Marquez-Curtis, Leah
    Qiu, Yuanyuan
    Janowska-Wieczorek, Anna
    Rozmus, Wojciech
    Tsui, Ying Y.
    OPTICS EXPRESS, 2011, 19 (01): : 387 - 398
  • [6] Hazelnut Pollen Phenotyping Using Label-Free Impedance Flow Cytometry
    Ascari, Lorenzo
    Cristofori, Valerio
    Macri, Federico
    Botta, Roberto
    Silvestri, Cristian
    De Gregorio, Tommaso
    Huerta, Eloy Suarez
    Di Berardino, Marco
    Kaufmann, Silvan
    Siniscalco, Consolata
    FRONTIERS IN PLANT SCIENCE, 2020, 11
  • [7] Label-Free and Simultaneous Mechanical and Electrical Characterization of Single Plant Cells Using Microfluidic Impedance Flow Cytometry
    Han, Ziyu
    Chen, Lincai
    Zhang, Shuaihua
    Wang, Jiehua
    Duan, Xuexin
    ANALYTICAL CHEMISTRY, 2020, 92 (21) : 14568 - 14575
  • [8] On the compatibility of single-cell microcarriers (nanovials) with microfluidic impedance cytometry
    Brandi, Cristian
    De Ninno, Adele
    Ruggiero, Filippo
    Limiti, Emanuele
    Abbruzzese, Franca
    Trombetta, Marcella
    Rainer, Alberto
    Bisegna, Paolo
    Caselli, Federica
    LAB ON A CHIP, 2024, 24 (11) : 2883 - 2892
  • [9] Label-free multidimensional bacterial characterization with an ultrawide detectable concentration range by microfluidic impedance cytometry
    Chen, Jiahong
    Zhong, Jianwei
    Lei, Hongtao
    Ai, Ye
    LAB ON A CHIP, 2023, 23 (23) : 5029 - 5038
  • [10] Label-Free Sensing of Cell Viability Using a Low-Cost Impedance Cytometry Device
    Yang, Bowen
    Wang, Chao
    Liang, Xinyi
    Li, Jinchao
    Li, Shanshan
    Wu, Jie Jayne
    Su, Tanbin
    Li, Junwei
    MICROMACHINES, 2023, 14 (02)