Bayesian emulation and history matching of JUNE

被引:8
|
作者
Vernon, I. [1 ,2 ]
Owen, J. [1 ,2 ]
Aylett-Bullock, J. [1 ,3 ]
Cuesta-Lazaro, C. [1 ,4 ]
Frawley, J. [1 ,5 ]
Quera-Bofarull, A. [1 ,4 ]
Sedgewick, A. [1 ,6 ]
Shi, D. [1 ,4 ]
Truong, H. [1 ,3 ]
Turner, M. [1 ,5 ]
Walker, J. [1 ,3 ]
Caulfield, T. [7 ]
Fong, K. [8 ,9 ]
Krauss, F. [1 ,3 ]
机构
[1] Univ Durham, Inst Data Sci, Durham DH13LE, England
[2] Univ Durham, Dept Math Sci, Durham DH13LE, England
[3] Univ Durham, Inst Particle Phys Phenomenol, Durham DH13LE, England
[4] Univ Durham, Inst Computat Cosmol, Durham DH13LE, England
[5] Univ Durham, Adv Res Comp, Durham DH13LE, England
[6] Univ Durham, Ctr Extragalact Astron, Durham DH13LE, England
[7] Univ Durham, Dept Comp Sci, Durham DH13LE, England
[8] UCL, Dept Sci Technol Engn & Publ Policy, London WC1E6BT, England
[9] Univ Coll London Hosp, Dept Anaesthesia, London NW12BU, England
基金
英国惠康基金;
关键词
disease models; Bayes linear; emulation; calibration; history matching; GALAXY FORMATION; COMPUTER CODE; INFERENCE; PREDICTION; DESIGN;
D O I
10.1098/rsta.2022.0039
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
We analyze JUNE: a detailed model of COVID-19 transmission with high spatial and demographic resolution, developed as part of the RAMP initiative. JUNE requires substantial computational resources to evaluate, making model calibration and general uncertainty analysis extremely challenging. We describe and employ the uncertainty quantification approaches of Bayes linear emulation and history matching to mimic JUNE and to perform a global parameter search, hence identifying regions of parameter space that produce acceptable matches to observed data, and demonstrating the capability of such methods.This article is part of the theme issue 'Technical challenges of modelling real-life epidemics and examples of overcoming these'.
引用
收藏
页数:20
相关论文
共 50 条
  • [21] Bayesian History Matching for Forward Model-Driven Structural Health Monitoring
    Gardner, P.
    Lord, C.
    Barthorpe, R. J.
    MODEL VALIDATION AND UNCERTAINTY QUANTIFICATION, VOL 3, 2019, : 175 - 183
  • [22] Bayesian object matching
    Arto Klami
    Machine Learning, 2013, 92 : 225 - 250
  • [23] Bayesian stereo matching
    Cheng, Li
    Caelli, Terry
    COMPUTER VISION AND IMAGE UNDERSTANDING, 2007, 106 (01) : 85 - 96
  • [24] Bayesian object matching
    Li, SZ
    JOURNAL OF APPLIED STATISTICS, 1998, 25 (03) : 425 - 443
  • [25] On Bayesian case matching
    Kontkanen, P
    Myllymäki, P
    Silander, T
    Tirri, H
    ADVANCES IN CASE-BASED REASONING, 1998, 1488 : 13 - 24
  • [26] Bayesian object matching
    Klami, Arto
    MACHINE LEARNING, 2013, 92 (2-3) : 225 - 250
  • [27] Bayesian grid matching
    Hartelius, K
    Carstensen, JM
    IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2003, 25 (02) : 162 - 173
  • [28] A Dynamic Modelling Strategy for Bayesian Computer Model Emulation
    Liu, Fei
    West, Mike
    BAYESIAN ANALYSIS, 2009, 4 (02): : 393 - 411
  • [29] Synchronized network emulation: Matching prototypes with complex simulations
    Distributed Systems Group, RWTH Aachen University, Germany
    Performance Evaluation Review, 2008, 36 (02): : 58 - 63
  • [30] Bayesian Network - A New Probabilistic Method for Petroleum Reservoir Production Prediction and History Matching
    Khaz'ali, A. R.
    Farahani, F. J.
    Ahmadabadi, M. N.
    PETROLEUM SCIENCE AND TECHNOLOGY, 2011, 29 (07) : 745 - 757