The 3-path-connectivity of the hypercubes

被引:8
|
作者
Zhu, Wen-Han [1 ]
Hao, Rong-Xia [1 ]
Li, Lin [1 ]
机构
[1] Beijing Jiaotong Univ, Sch Math & Stat, Beijing 100044, Peoples R China
基金
中国国家自然科学基金;
关键词
Hypercube; Regular graph; Path-connectivity; Path; GENERALIZED CONNECTIVITY; PATH-CONNECTIVITY; GRAPHS; 3-CONNECTIVITY; TREES;
D O I
10.1016/j.dam.2022.08.015
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let G be a connected simple graph with vertex set V(G) and edge set E(G). For S subset of V(G), let pi(G)(S) and kappa(G)(S) denote the maximum number of internally disjoint S-paths and S-trees, respectively, in G. For an integer k with k >= 2, the k-path-connectivity pi(k)(G) (resp. k-tree-connectivity kappa(k)(G)) is defined as the minimum pi(G)(S) (resp. kappa(G)(S)) over all k-subsets S of V(G). It is proved that deciding whether pi(G)(S) >= k is NP-complete for a given S in Li et al. (2021). In this paper, the upper bound of pi(3)(Q(n)) is gotten by using the result pi(3)(G) <= left perpendicular3k-r/4right perpendicular. for a k-regular graph G, where r =max{vertical bar N-G(x) boolean AND N-G(y) boolean AND N-G(z)vertical bar : {x, y, z} subset of V(G)}. Furthermore, we consider the 3-path-connectivity of the n-dimensional hypercube Qn and prove that pi(3)(Q(n)) = left perpendicular3n-1/4right perpendicular for n >= 2, which implies that the upper bound for Q(n) is tight. (C) 2022 Elsevier B.V. All rights reserved.
引用
收藏
页码:203 / 209
页数:7
相关论文
共 50 条
  • [41] Structure and Substructure Connectivity of Balanced Hypercubes
    Huazhong Lü
    Tingzeng Wu
    Bulletin of the Malaysian Mathematical Sciences Society, 2020, 43 : 2659 - 2672
  • [42] On the extra edge-connectivity of hypercubes
    Ming-zu Zhang
    Ji-xiang Meng
    Wei-hua Yang
    Applied Mathematics-A Journal of Chinese Universities, 2016, 31 : 198 - 204
  • [43] The generalized 4-connectivity of hypercubes
    Lin, Shangwei
    Zhang, Qianhua
    DISCRETE APPLIED MATHEMATICS, 2017, 220 : 60 - 67
  • [44] Two kinds of conditional connectivity of hypercubes
    Zhu, Bo
    Zhang, Shumin
    Zou, Jinyu
    Ye, Chengfu
    AKCE INTERNATIONAL JOURNAL OF GRAPHS AND COMBINATORICS, 2022, 19 (03) : 255 - 260
  • [45] Structure and Substructure Connectivity of Balanced Hypercubes
    Lu, Huazhong
    Wu, Tingzeng
    BULLETIN OF THE MALAYSIAN MATHEMATICAL SCIENCES SOCIETY, 2020, 43 (03) : 2659 - 2672
  • [46] On extra connectivity and extra edge-connectivity of balanced hypercubes
    Yang, Da-Wei
    Feng, Yan-Quan
    Lee, Jaeun
    Zhou, Jin-Xin
    APPLIED MATHEMATICS AND COMPUTATION, 2018, 320 : 464 - 473
  • [47] On extra connectivity and extra edge-connectivity of balanced hypercubes
    Lue, Huazhong
    INTERNATIONAL JOURNAL OF COMPUTER MATHEMATICS, 2017, 94 (04) : 813 - 820
  • [48] {1,2,3}-Restricted Connectivity of $(n,k)$-Enhanced Hypercubes
    Yu, Hui
    Yang, Jiejie
    Lin, Limei
    Huang, Yanze
    Li, Jine
    Chen, Riqing
    Computer Journal, 2020, 63 (09): : 1355 - 1371
  • [49] The 2-path-bipanconnectivity of hypercubes
    Chen, Xie-Bin
    INFORMATION SCIENCES, 2013, 239 : 283 - 293
  • [50] THE PATH-DISTANCE-WIDTH OF HYPERCUBES
    Otachi, Yota
    DISCUSSIONES MATHEMATICAE GRAPH THEORY, 2013, 33 (02) : 467 - 470