The 3-path-connectivity of the hypercubes

被引:8
|
作者
Zhu, Wen-Han [1 ]
Hao, Rong-Xia [1 ]
Li, Lin [1 ]
机构
[1] Beijing Jiaotong Univ, Sch Math & Stat, Beijing 100044, Peoples R China
基金
中国国家自然科学基金;
关键词
Hypercube; Regular graph; Path-connectivity; Path; GENERALIZED CONNECTIVITY; PATH-CONNECTIVITY; GRAPHS; 3-CONNECTIVITY; TREES;
D O I
10.1016/j.dam.2022.08.015
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let G be a connected simple graph with vertex set V(G) and edge set E(G). For S subset of V(G), let pi(G)(S) and kappa(G)(S) denote the maximum number of internally disjoint S-paths and S-trees, respectively, in G. For an integer k with k >= 2, the k-path-connectivity pi(k)(G) (resp. k-tree-connectivity kappa(k)(G)) is defined as the minimum pi(G)(S) (resp. kappa(G)(S)) over all k-subsets S of V(G). It is proved that deciding whether pi(G)(S) >= k is NP-complete for a given S in Li et al. (2021). In this paper, the upper bound of pi(3)(Q(n)) is gotten by using the result pi(3)(G) <= left perpendicular3k-r/4right perpendicular. for a k-regular graph G, where r =max{vertical bar N-G(x) boolean AND N-G(y) boolean AND N-G(z)vertical bar : {x, y, z} subset of V(G)}. Furthermore, we consider the 3-path-connectivity of the n-dimensional hypercube Qn and prove that pi(3)(Q(n)) = left perpendicular3n-1/4right perpendicular for n >= 2, which implies that the upper bound for Q(n) is tight. (C) 2022 Elsevier B.V. All rights reserved.
引用
收藏
页码:203 / 209
页数:7
相关论文
共 50 条
  • [31] Restricted Arc Connectivity of Unidirectional Hypercubes and Unidirectional Folded Hypercubes
    Lin, Shang-wei
    Fan, Na-qi
    TAIWANESE JOURNAL OF MATHEMATICS, 2019, 23 (03): : 529 - 543
  • [32] Path embedding on folded hypercubes
    Hsieh, Sun-Yuan
    Theory and Applications of Models of Computation, Proceedings, 2007, 4484 : 750 - 759
  • [33] Path embedding in faulty hypercubes
    Ma, Meijie
    Liu, Guizhen
    Pan, Xiangfeng
    APPLIED MATHEMATICS AND COMPUTATION, 2007, 192 (01) : 233 - 238
  • [34] A note on path bipancyclicity of hypercubes
    Lai, Chia-Jui
    INFORMATION PROCESSING LETTERS, 2009, 109 (19) : 1129 - 1130
  • [35] A simple proof to the connectivity of exchanged hypercubes
    Ning, Wantao
    Feng, Xiaoli
    UTILITAS MATHEMATICA, 2013, 92 : 337 - 340
  • [36] On the extra edge-connectivity of hypercubes
    ZHANG Ming-zu
    MENG Ji-xiang
    YANG Wei-hua
    Applied Mathematics:A Journal of Chinese Universities, 2016, 31 (02) : 198 - 204
  • [37] On container length and connectivity in unidirectional hypercubes
    Jwo, JS
    Tuan, TC
    NETWORKS, 1998, 32 (04) : 307 - 317
  • [38] Simplified kinetic connectivity for rectangles and hypercubes
    Hershberger, J
    Suri, S
    PROCEEDINGS OF THE TWELFTH ANNUAL ACM-SIAM SYMPOSIUM ON DISCRETE ALGORITHMS, 2001, : 158 - 167
  • [39] Analysis on the Component Connectivity of Enhanced Hypercubes
    Xu, Liqiong
    Guo, Litao
    COMPUTER JOURNAL, 2022, 65 (04): : 890 - 896
  • [40] On the extra edge-connectivity of hypercubes
    Zhang Ming-zu
    Meng Ji-xiang
    Yang Wei-hua
    APPLIED MATHEMATICS-A JOURNAL OF CHINESE UNIVERSITIES SERIES B, 2016, 31 (02) : 198 - 204