The 3-path-connectivity of the hypercubes

被引:8
|
作者
Zhu, Wen-Han [1 ]
Hao, Rong-Xia [1 ]
Li, Lin [1 ]
机构
[1] Beijing Jiaotong Univ, Sch Math & Stat, Beijing 100044, Peoples R China
基金
中国国家自然科学基金;
关键词
Hypercube; Regular graph; Path-connectivity; Path; GENERALIZED CONNECTIVITY; PATH-CONNECTIVITY; GRAPHS; 3-CONNECTIVITY; TREES;
D O I
10.1016/j.dam.2022.08.015
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let G be a connected simple graph with vertex set V(G) and edge set E(G). For S subset of V(G), let pi(G)(S) and kappa(G)(S) denote the maximum number of internally disjoint S-paths and S-trees, respectively, in G. For an integer k with k >= 2, the k-path-connectivity pi(k)(G) (resp. k-tree-connectivity kappa(k)(G)) is defined as the minimum pi(G)(S) (resp. kappa(G)(S)) over all k-subsets S of V(G). It is proved that deciding whether pi(G)(S) >= k is NP-complete for a given S in Li et al. (2021). In this paper, the upper bound of pi(3)(Q(n)) is gotten by using the result pi(3)(G) <= left perpendicular3k-r/4right perpendicular. for a k-regular graph G, where r =max{vertical bar N-G(x) boolean AND N-G(y) boolean AND N-G(z)vertical bar : {x, y, z} subset of V(G)}. Furthermore, we consider the 3-path-connectivity of the n-dimensional hypercube Qn and prove that pi(3)(Q(n)) = left perpendicular3n-1/4right perpendicular for n >= 2, which implies that the upper bound for Q(n) is tight. (C) 2022 Elsevier B.V. All rights reserved.
引用
收藏
页码:203 / 209
页数:7
相关论文
共 50 条
  • [21] The Star-Structure Connectivity and Star-Substructure Connectivity of Hypercubes and Folded Hypercubes
    Ba, Lina
    Zhang, Heping
    COMPUTER JOURNAL, 2022, 65 (12): : 3156 - 3166
  • [22] Path bipancyclicity of hypercubes
    Tsai, Chang-Hsiung
    Jiang, Shu-Yun
    INFORMATION PROCESSING LETTERS, 2007, 101 (03) : 93 - 97
  • [23] The super connectivity of exchanged hypercubes
    Ma, Meijie
    Zhu, Liying
    INFORMATION PROCESSING LETTERS, 2011, 111 (08) : 360 - 364
  • [24] The extra connectivity of enhanced hypercubes
    Li, Jin'e
    Huang, Yanze
    Lin, Limei
    Yu, Hui
    Chen, Riqing
    INTERNATIONAL JOURNAL OF PARALLEL EMERGENT AND DISTRIBUTED SYSTEMS, 2020, 35 (01) : 91 - 102
  • [25] Component Edge Connectivity of Hypercubes
    Zhao, Shuli
    Yang, Weihua
    Zhang, Shurong
    Xu, Liqiong
    INTERNATIONAL JOURNAL OF FOUNDATIONS OF COMPUTER SCIENCE, 2018, 29 (06) : 995 - 1001
  • [26] The extra connectivity of the enhanced hypercubes
    Sabir, Eminjan
    Mamut, Aygul
    Vumar, Elkin
    THEORETICAL COMPUTER SCIENCE, 2019, 799 : 22 - 31
  • [27] Conditional connectivity of folded hypercubes
    Zhao, Shuli
    Yang, Weihua
    DISCRETE APPLIED MATHEMATICS, 2019, 257 : 388 - 392
  • [28] Super connectivity of balanced hypercubes
    Yang, Ming-Chien
    APPLIED MATHEMATICS AND COMPUTATION, 2012, 219 (03) : 970 - 975
  • [29] The spanning connectivity of folded hypercubes
    Ma, Meijie
    INFORMATION SCIENCES, 2010, 180 (17) : 3373 - 3379
  • [30] {1,2,3}-Restricted Connectivity of -Enhanced Hypercubes
    Yu, Hui
    Yang, Jiejie
    Lin, Limei
    Huang, Yanze
    Li, Jine
    Chen, Riqing
    COMPUTER JOURNAL, 2020, 63 (09): : 1355 - 1371