Explorations of the holonomy of a rolling sphere

被引:1
|
作者
Honein, Theresa E. [1 ]
O'Reilly, Oliver M. [1 ]
机构
[1] Univ Calif Berkeley, Dept Mech Engn, Berkeley, CA 94720 USA
关键词
holonomy; non-holonomic constraints; rolling sphere; motion planning; rotations; spherical robots; GEOMETRY;
D O I
10.1098/rspa.2023.0684
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Consider a rigid body rolling with one point in contact with a fixed surface. Now suppose that the instantaneous point of contact traces out a closed path. As a demonstration of a phenomenon known as holonomy, the body will typically not return to its original orientation. The simplest demonstration of this phenomenon in rigid body dynamics occurs in the motion of a rolling sphere and finds application to path planning and reorientation of spherical robots. Motivated by earlier works of Bryant and Johnson, we establish expressions for the change in orientation of a rolling sphere after completing a rectangular path. We use numerical methods to show that all possible changes in orientation are possible using a single rectangular path. Based on the Euler angle parameterization of a rotation, we develop a more intuitive method to achieve a desired orientation using three rectangular paths. With regards to applications, the paths we discuss can be employed to achieve any desired reorientation of a spherical robot.
引用
收藏
页数:17
相关论文
共 50 条
  • [1] SPECTRUM AND HOLONOMY OF THE LINE BUNDLE OVER THE SPHERE
    KUWABARA, R
    MATHEMATISCHE ZEITSCHRIFT, 1984, 187 (04) : 481 - 490
  • [2] Computational explorations of a deformed fuzzy sphere
    Glaser, L.
    JOURNAL OF MATHEMATICAL PHYSICS, 2023, 64 (12)
  • [3] The nonholonomy of the rolling sphere
    Johnson, Brody Dylan
    AMERICAN MATHEMATICAL MONTHLY, 2007, 114 (06): : 500 - 508
  • [4] Wake transition of a rolling sphere
    Bolnot, H.
    Passaggia, P. -Y.
    Leweke, T.
    Hourigan, K.
    JOURNAL OF VISUALIZATION, 2011, 14 (01) : 1 - 2
  • [5] Exponential stabilization of the rolling sphere
    Das, T
    Mukherjee, R
    AUTOMATICA, 2004, 40 (11) : 1877 - 1889
  • [6] Rolling sphere - method or theory?
    Szedenik, N
    JOURNAL OF ELECTROSTATICS, 2001, 51 (1-4) : 345 - 350
  • [7] Kinematics for rolling a Lorentzian sphere
    Korolko, Anna
    Leite, Fatima Silva
    2011 50TH IEEE CONFERENCE ON DECISION AND CONTROL AND EUROPEAN CONTROL CONFERENCE (CDC-ECC), 2011, : 6522 - 6527
  • [8] Rubber rolling over a sphere
    J. Koiller
    K. Ehlers
    Regular and Chaotic Dynamics, 2007, 12 : 127 - 152
  • [9] Rubber rolling over a sphere
    Koiller, J.
    Ehlers, K.
    REGULAR & CHAOTIC DYNAMICS, 2007, 12 (02): : 127 - 152
  • [10] COMMENT ON THE SLIPPING OF A ROLLING SPHERE
    OLSSON, MG
    AMERICAN JOURNAL OF PHYSICS, 1986, 54 (07) : 667 - 667