Fractional Polynomial Models as Special Cases of Bayesian Generalized Nonlinear Models

被引:1
|
作者
Hubin, Aliaksandr [1 ,2 ,3 ]
Heinze, Georg [4 ]
De Bin, Riccardo [2 ]
机构
[1] Norwegian Univ Life Sci, Bioinformat & Appl Stat, N-1433 As, Norway
[2] Univ Oslo, Dept Math, N-0313 Oslo, Norway
[3] Ostfold Univ Coll, Res Adm, N-1757 Halden, Norway
[4] Med Univ Vienna, Inst Clin Biometr, Ctr Med Data Sci, A-1090 Vienna, Austria
关键词
Bayesian model selection; MCMC; nonlinear effects; VARIABLE SELECTION; G-PRIORS; REGRESSION; TRANSFORMATION; INFERENCE; MIXTURES;
D O I
10.3390/fractalfract7090641
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We propose a framework for fitting multivariable fractional polynomial models as specialcases of Bayesian generalized nonlinear models, applying an adapted version of the geneticallymodified mode jumping Markov chain Monte Carlo algorithm. The universality of the Bayesiangeneralized nonlinear models allows us to employ a Bayesian version of fractional polynomials inany supervised learning task, including regression, classification, and time-to-event data analysis.We show through a simulation study that our novel approach performs similarly to the classicalfrequentist multivariable fractional polynomials approach in terms of variable selection, identificationof the true functional forms, and prediction ability, while naturally providing, in contrast to itsfrequentist version, a coherent inference framework. Real-data examples provide further evidence infavor of our approach and show its flexibility.
引用
收藏
页数:23
相关论文
共 50 条
  • [41] Nonlinear system identification of fractional Wiener models
    Sersour, Lamia
    Djamah, Tounsia
    Bettayeb, Maamar
    NONLINEAR DYNAMICS, 2018, 92 (04) : 1493 - 1505
  • [42] Parametric Identification of Nonlinear Fractional Hammerstein Models
    Prasad, Vineet
    Kothari, Kajal
    Mehta, Utkal
    FRACTAL AND FRACTIONAL, 2020, 4 (01) : 1 - 12
  • [43] Nonlinear system identification of fractional Wiener models
    Lamia Sersour
    Tounsia Djamah
    Maamar Bettayeb
    Nonlinear Dynamics, 2018, 92 : 1493 - 1505
  • [44] Comparison of polynomial and nonlinear models on description of pepper growth
    Jane, Sergio Alberto
    Fernandes, Felipe Augusto
    Silva, Edilson Marcelino
    Muniz, Joel Augusto
    Fernandes, Tales Jesus
    REVISTA BRASILEIRA DE CIENCIAS AGRARIAS-AGRARIA, 2019, 14 (04):
  • [45] NUMERICAL METHODS FOR POLYNOMIAL MODELS IN NONLINEAR FACTOR ANALYSIS
    MCDONALD, RP
    PSYCHOMETRIKA, 1967, 32 (01) : 77 - 77
  • [46] A Computational Bayesian Method for Generalized Semiparametric Regression Models
    Kyung, Minjung
    COMMUNICATIONS IN STATISTICS-SIMULATION AND COMPUTATION, 2016, 45 (03) : 1104 - 1128
  • [47] Theoretical analysis of OFDM signals in nonlinear polynomial models
    Bohara, Vivek Ashok
    Ting, See Ho
    2007 6TH INTERNATIONAL CONFERENCE ON INFORMATION, COMMUNICATIONS & SIGNAL PROCESSING, VOLS 1-4, 2007, : 1476 - 1480
  • [48] Bayesian inference for generalized linear models for spiking neurons
    Gerwinn, Sebastian
    Macke, Jakob H.
    Bethge, Matthias
    FRONTIERS IN COMPUTATIONAL NEUROSCIENCE, 2010, 4
  • [49] DEFAULT BAYESIAN ANALYSIS FOR MULTIVARIATE GENERALIZED CAR MODELS
    Dass, Sarat C.
    Lim, Chae Young
    Maiti, Tapabrata
    STATISTICA SINICA, 2012, 22 (01) : 231 - 248
  • [50] General design Bayesian generalized linear mixed models
    Zhao, Y.
    Staudenmayer, J.
    Coull, B. A.
    Wand, M. P.
    STATISTICAL SCIENCE, 2006, 21 (01) : 35 - 51