Higher Holder regularity for mixed local and nonlocal degenerate elliptic equations

被引:28
|
作者
Garain, Prashanta [1 ,3 ]
Lindgren, Erik [2 ]
机构
[1] Uppsala Univ, Dept Math, Box 480, S-75106 Uppsala, Sweden
[2] KTH Royal Inst Technol, Dept Math, S-10044 Stockholm, Sweden
[3] Indian Inst Technol Indore, Dept Math, Khandwa Rd, Simrol 453552, Madhya Pradesh, India
基金
瑞典研究理事会;
关键词
35B65; 35D30; 35J70; 35R09; 35R11; HARNACK PRINCIPLE; DIRICHLET FORMS; P-LAPLACIAN;
D O I
10.1007/s00526-022-02401-6
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We consider equations involving a combination of local and nonlocal degenerate p-Laplace operators. The main contribution of the paper is almost Lipschitz regularity for the homogeneous equation and Holder continuity with an explicit Holder exponent in the general case. For certain parameters, our results also imply Holder continuity of the gradient. In addition, we establish existence, uniqueness and local boundedness. The approach is based on an iteration in the spirit of Moser combined with an approximation method.
引用
收藏
页数:36
相关论文
共 50 条
  • [31] Local Holder and maximal regularity of solutions of elliptic equations with superquadratic gradient terms
    Cirant, Marco
    Verzini, Gianmaria
    ADVANCES IN MATHEMATICS, 2022, 409
  • [32] Local Holder regularity for solutions of elliptic systems
    Ragusa, MA
    DUKE MATHEMATICAL JOURNAL, 2002, 113 (02) : 385 - 397
  • [33] Higher Holder regularity for a subquadratic nonlocal parabolic equation
    Garain, Prashanta
    Lindgren, Erik
    Tavakoli, Alireza
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2025, 419 : 253 - 290
  • [34] Holder Regularity for Degenerate Parabolic Equations with Variable Exponents
    El Bahja, Hamid
    BOLETIM SOCIEDADE PARANAENSE DE MATEMATICA, 2022, 40
  • [35] Semilinear elliptic equations involving mixed local and nonlocal operators
    Biagi, Stefano
    Vecchi, Eugenio
    Dipierro, Serena
    Valdinoci, Enrico
    PROCEEDINGS OF THE ROYAL SOCIETY OF EDINBURGH SECTION A-MATHEMATICS, 2021, 151 (05) : 1611 - 1641
  • [36] Matrix weights and regularity for degenerate elliptic equations
    Di Fazio, Giuseppe
    Fanciullo, Maria Stella
    Monticelli, Dario Daniele
    Rodney, Scott
    Zamboni, Pietro
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2023, 237
  • [37] Elliptic Equations with Degenerate Coercivity: Gradient Regularity
    Daniela Giachetti
    Maria Michaela Porzio
    Acta Mathematica Sinica, 2003, 19 : 349 - 370
  • [38] Regularity for entropy solutions to degenerate elliptic equations
    Gao, Hongya
    Huang, Miaomiao
    Ren, Wei
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2020, 491 (01)
  • [39] Regularity theorems for a class of degenerate elliptic equations
    Song, Qiaozhen
    Wang, Yan
    ELECTRONIC JOURNAL OF QUALITATIVE THEORY OF DIFFERENTIAL EQUATIONS, 2016, (102) : 1 - 14
  • [40] Regularity for anisotropic elliptic equations with degenerate coercivity
    Gao, Hongya
    Leonetti, Francesco
    Ren, Wei
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2019, 187 : 493 - 505