On hamiltonian properties of K1,r-free split graphs

被引:1
|
作者
Liu, Xia [1 ]
Song, Sulin [2 ]
Zhan, Mingquan [3 ]
Lai, Hong-Jian [4 ]
机构
[1] Northwest Normal Univ, Dept Math, Lanzhou 730070, Gansu, Peoples R China
[2] West Texas A&M Univ, Dept Math, Canyon, TX 79016 USA
[3] Millersville Univ Pennsylvania, Dept Math, Millersville, PA 17551 USA
[4] West Virginia Univ, Dept Math, Morgantown, WV 26506 USA
关键词
K1r-free graphs; Hamiltonian cycles; Split graphs; Fully cycle extendable;
D O I
10.1016/j.disc.2023.113402
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let r > 3 be an integer. A graph G is K1,r-free if G does not have an induced subgraph isomorphic to K1,r. A graph G is fully cycle extendable if every vertex in G lies on a cycle of length 3 and every non-hamiltonian cycle in G is extendable. A connected graph G is a split graph if the vertex set of G can be partitioned into a clique and a stable set. Dai et al. (2022) [4] conjectured that every (r - 1)-connected K1,r-free split graph is hamiltonian, and they proved this conjecture when r =4 while Renjith and Sadagopan proved the case when r = 3. In this paper, we introduce a special type of alternating paths in the study of hamiltonian properties of split graphs and prove that a split graph G is hamiltonian if and only if G is fully cycle extendable. Consequently, for r is an element of {3, 4}, every r-connected K1,r-free split graph is Hamilton-connected and every (r - 1)-connected K1,r-free split graph is fully cycle extendable.(c) 2023 Elsevier B.V. All rights reserved.
引用
收藏
页数:8
相关论文
共 50 条
  • [21] K1,r-free图的次限制树多项式算法
    徐玉华
    纯粹数学与应用数学, 1996, (02) : 104 - 107
  • [22] Highly Hamiltonian K1,3P4-Free Graphs
    Ramos, R. E.
    Babierra, A. L.
    SOUTHEAST ASIAN BULLETIN OF MATHEMATICS, 2012, 36 (04) : 529 - 534
  • [23] K1,r-free图中点独立数与其它参数之间的关系(英文)
    李峰伟
    周艳
    宝鸡文理学院学报(自然科学版), 2001, (03) : 182 - 184
  • [24] Connected even factors in {K1,l, K1,l + e}-free graphs
    Duan, Fang
    Zhang, Weijuan
    Wang, Guoping
    ARS COMBINATORIA, 2014, 115 : 385 - 389
  • [25] ORDERS OF ERROR FUNCTIONS OF (K,R) AND R-FREE INTEGERS
    SURYANARAYANA, D
    NOTICES OF THE AMERICAN MATHEMATICAL SOCIETY, 1976, 23 (06): : A574 - A575
  • [26] Vertex-disjoint copies of K1 + (K1 ∨ K2) in claw-free graphs
    Fujita, Shinya
    DISCRETE MATHEMATICS, 2008, 308 (09) : 1628 - 1633
  • [27] REGULAR FACTORS IN K1,N-FREE GRAPHS
    EGAWA, Y
    OTA, K
    JOURNAL OF GRAPH THEORY, 1991, 15 (03) : 337 - 344
  • [28] Hyper K1,r and sub-K1,r fault tolerance of star graphs
    Yang, Yuxing
    Hua, Xiaohui
    Yang, Lulu
    DISCRETE APPLIED MATHEMATICS, 2023, 339 : 172 - 177
  • [29] HAMILTONIAN CIRCUITS IN N2-LOCALLY CONNECTED K1,3-FREE GRAPHS
    RYJACEK, Z
    JOURNAL OF GRAPH THEORY, 1990, 14 (03) : 321 - 331
  • [30] Eigenvalues of K1,k-Free Graphs and the Connectivity of Their Independence Complexes
    Aharoni, Ron
    Alon, Noga
    Berger, Eli
    JOURNAL OF GRAPH THEORY, 2016, 83 (04) : 384 - 391