Regulating solid electrolyte interphase film on fluorine-doped hard carbon anode for sodium-ion battery

被引:20
|
作者
Yang, Cuiyun [1 ]
Zhong, Wentao [1 ]
Liu, Yuqiao [1 ]
Deng, Qiang [1 ]
Cheng, Qian [1 ]
Liu, Xiaozhao [1 ]
Yang, Chenghao [1 ,2 ]
机构
[1] South China Univ Technol, New Energy Res Inst, Sch Environm & Energy, Guangzhou Key Lab Surface Chem Energy Mat, Guangzhou, Peoples R China
[2] South China Univ Technol, New Energy Res Inst, Sch Environm & Energy, Guangzhou Key Lab Surface Chem Energy Mat, Guangzhou 510006, Peoples R China
基金
国家重点研发计划;
关键词
F-doping; hard carbon; reduction kinetics; sodium-ion batteries; solid electrolyte interphase film; CATHODE MATERIALS; ELECTROCHEMICAL PERFORMANCE; METAL RECOVERY; MECHANOCHEMICAL ACTIVATION; MECHANICAL SEPARATION; MAGNETIC SEPARATION; RECYCLING LITHIUM; GRAPHITE ANODES; RE-SYNTHESIS; LICOO2;
D O I
10.1002/cey2.503
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
For the performance optimization strategies of hard carbon, heteroatom doping is an effective way to enhance the intrinsic transfer properties of sodium ions and electrons for accelerating the reaction kinetics. However, the previous work focuses mainly on the intrinsic physicochemical property changes of the material, but little attention has been paid to the resulting interfacial regulation of the electrode surface, namely the formation of solid electrolyte interphase (SEI) film. In this work, element F, which has the highest electronegativity, was chosen as the doping source to, more effectively, tune the electronic structure of the hard carbon. The effect of F-doping on the physicochemical properties of hard carbon was not only systematically analyzed but also investigated with spectroscopy, optics, and in situ characterization techniques to further verify that appropriate F-doping plays a positive role in constructing a homogenous and inorganic-rich SEI film. The experimentally demonstrated link between the electronic structure of the electrode and the SEI film properties can reframe the doping optimization strategy as well as provide a new idea for the design of electrode materials with low reduction kinetics to the electrolyte. As a result, the optimized sample with the appropriate F-doping content exhibits the best electrochemical performance with high capacity (434.53 mA h g-1 at 20 mA g-1) and excellent rate capability (141 mA h g-1 at 400 mA g-1). Fluorine is introduced to realize dual-function doping for hard carbon (HC) anodes. It modifies the physicochemical properties of HC, optimizing the sodium storage structure. The alteration of the electronic structure of HC by fluorine induces a homogenous and inorganic-rich solid electrolyte interphase film, contributing to interfacial reaction kinetics and stable insertion/extraction of sodium ions. image
引用
收藏
页数:16
相关论文
共 50 条
  • [1] Fluorine-Doped Hard Carbon as the Advanced Performance Anode Material of Sodium-Ion Batteries
    Kong, Lingchen
    Li, Yu
    Feng, Wei
    TRANSACTIONS OF TIANJIN UNIVERSITY, 2022, 28 (02) : 123 - 131
  • [2] Fluorine-Doped Hard Carbon as the Advanced Performance Anode Material of Sodium-Ion Batteries
    Lingchen Kong
    Yu Li
    Wei Feng
    Transactions of Tianjin University , 2022, (02) : 123 - 131
  • [3] Fluorine-Doped Hard Carbon as the Advanced Performance Anode Material of Sodium-Ion Batteries
    Lingchen Kong
    Yu Li
    Wei Feng
    Transactions of Tianjin University, 2022, 28 : 123 - 131
  • [4] Fluorine-Doped Hard Carbon as the Advanced Performance Anode Material of Sodium-Ion Batteries
    Lingchen Kong
    Yu Li
    Wei Feng
    Transactions of Tianjin University, 2022, 28 (02) : 123 - 131
  • [5] Progress in electrolyte and interface of hard carbon and graphite anode for sodium-ion battery
    Qi Liu
    Rigan Xu
    Daobin Mu
    Guoqiang Tan
    Hongcai Gao
    Ning Li
    Renjie Chen
    Feng Wu
    Carbon Energy, 2022, 4 (03) : 458 - 479
  • [6] Progress in electrolyte and interface of hard carbon and graphite anode for sodium-ion battery
    Liu, Qi
    Xu, Rigan
    Mu, Daobin
    Tan, Guoqiang
    Gao, Hongcai
    Li, Ning
    Chen, Renjie
    Wu, Feng
    CARBON ENERGY, 2022, 4 (03) : 458 - 479
  • [7] Analysis of the Solid Electrolyte Interphase on Hard Carbon Electrodes in Sodium-Ion Batteries
    Carboni, Marco
    Manzi, Jessica
    Armstrong, Antony Robert
    Billaud, Juliette
    Brutti, Sergio
    Younesi, Reza
    CHEMELECTROCHEM, 2019, 6 (06) : 1745 - 1753
  • [8] Hierarchical porous hard carbon enables integral solid electrolyte interphase as robust anode for sodium-ion batteries
    Wang, Xu-Kun
    Shi, Juan
    Mi, Li-Wei
    Zhai, Yun-Pu
    Zhang, Ji-Yu
    Feng, Xiang-Ming
    Wu, Zi-Jie
    Chen, Wei-Hua
    RARE METALS, 2020, 39 (09) : 1053 - 1062
  • [9] Hierarchical porous hard carbon enables integral solid electrolyte interphase as robust anode for sodium-ion batteries
    Xu-Kun Wang
    Juan Shi
    Li-Wei Mi
    Yun-Pu Zhai
    Ji-Yu Zhang
    Xiang-Ming Feng
    Zi-Jie Wu
    Wei-Hua Chen
    RareMetals, 2020, 39 (09) : 1053 - 1062
  • [10] Additive Dependency on Formation of Solid Electrolyte Interphase on the Surface of Polymeric Hard Carbon Anode in Sodium-ion Batteries
    Kim, Hayoung
    Yoon, Seung Uk
    Park, Subong
    Jin, Hyoung-Joon
    POLYMER-KOREA, 2020, 44 (01) : 76 - 81