Random and mean Lyapunov exponents for GLn(R)

被引:0
|
作者
Armentano, Diego [1 ]
Chinta, Gautam [2 ]
Sahi, Siddhartha [3 ]
Shub, Michael [4 ,5 ]
机构
[1] Univ Republica, Fac Ciencias Econ & Adm, Dept Metodos Cuantitat, Av Gonzalo Ramirez 1926, Montevideo 11200, Uruguay
[2] CUNY City Coll, Dept Math, New York, NY 10031 USA
[3] Rutgers State Univ, Hill Ctr, Dept Math, Busch Campus,110 Frelinghuysen Rd, Piscataway, NJ 08854 USA
[4] CUNY, City Coll, Dept Math, New York, NY 10031 USA
[5] CUNY, Grad Ctr, New York, NY 10031 USA
基金
美国国家科学基金会;
关键词
Lyapunov exponents; random products; spherical polynomials; EXPANDING MAPS; FORMULA;
D O I
10.1017/etds.2023.106
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We consider orthogonally invariant probability measures on $\operatorname {\mathrm GL(n)(R) and compare the mean of the logs of the moduli of eigenvalues of the matrices with the Lyapunov exponents of random matrix products independently drawn with respect to the measure. We give a lower bound for the former in terms of the latter. The results are motivated by Dedieu and Shub [On random and mean exponents for unitarily invariant probability measures on GL(n)(C) . Asterisque 287 (2003), xvii, 1-18]. A novel feature of our treatment is the use of the theory of spherical polynomials in the proof of our main result.
引用
收藏
页码:2063 / 2079
页数:17
相关论文
共 50 条