A robust source-free unsupervised domain adaptation method based on uncertainty measure and adaptive calibration for rotating machinery fault diagnosis

被引:0
|
作者
Lin, Yanzhuo [1 ]
Wang, Yu [1 ]
Zhang, Mingquan [1 ]
Zhao, Ming [1 ]
机构
[1] Xi An Jiao Tong Univ, State Key Lab Mfg & Syst Engn, Xian 710049, Peoples R China
基金
中国国家自然科学基金;
关键词
Intelligent fault diagnosis; Source-free unsupervised domain adaptation; Uncertainty measure; Transfer learning; Rotating machinery;
D O I
10.1016/j.ress.2024.110516
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Unsupervised domain adaptation (UDA), usually trained jointly with labeled source data and unlabeled target data, is widely used to address the problem of lack of labeled data for new operating conditions of rotating machinery. However, due to the expensive storage costs and growing concern about data privacy, source-domain data are often not available, leading to the inapplicability of UDA. How to perform domain adaptation in scenarios without access to the source data has become an urgent problem to be solved. To this end, we propose a robust source-free unsupervised domain adaptation method based on uncertainty measure and adaptive calibration for fault diagnosis. The method only requires the use of the lightweight source model and unlabeled target data, which provides a new possibility to deploy domain adaptation models on resource-limited devices with good protection of data privacy. Specifically, based on proposed channel-level and instance-level uncertainty measures, adaptive calibration of source-domain model knowledge and target-domain risk samples during domain transfer is performed to attenuate the effect of negative transfer. Then, entropy minimization and targetdomain diversity loss are introduced to redistribute the target samples and realize domain adaptation. Extensive cross-domain diagnostic experiments on two datasets demonstrate the effectiveness of the proposed method.
引用
收藏
页数:15
相关论文
共 50 条
  • [31] Adaptive manifold partial domain adaptation for fault transfer diagnosis of rotating machinery
    Qin, Yi
    Qian, Quan
    Wang, Zhengyi
    Mao, Yongfang
    ENGINEERING APPLICATIONS OF ARTIFICIAL INTELLIGENCE, 2023, 126
  • [32] Rethinking confidence scores for source-free unsupervised domain adaptation
    Tian Q.
    Sun C.
    Neural Computing and Applications, 2024, 36 (24) : 14951 - 14966
  • [33] Mixed Attention Network for Source-Free Domain Adaptation in Bearing Fault Diagnosis
    Liu, Yijiao
    Yuan, Qiufan
    Sun, Kang
    Huo, Mingying
    Qi, Naiming
    IEEE ACCESS, 2024, 12 : 93771 - 93780
  • [34] Source-Free Unsupervised Domain Adaptation with Sample Transport Learning
    Qing Tian
    Chuang Ma
    Feng-Yuan Zhang
    Shun Peng
    Hui Xue
    Journal of Computer Science and Technology, 2021, 36 : 606 - 616
  • [35] Source-free Unsupervised Domain Adaptation with Trusted Pseudo Samples
    Tian, Qing
    Peng, Shun
    Ma, Tinghuai
    ACM TRANSACTIONS ON INTELLIGENT SYSTEMS AND TECHNOLOGY, 2023, 14 (02)
  • [36] Concurrent Subsidiary Supervision for Unsupervised Source-Free Domain Adaptation
    Kundu, Jogendra Nath
    Bhambri, Suvaansh
    Kulkarni, Akshay
    Sarkar, Hiran
    Jampani, Varun
    Babu, R. Venkatesh
    COMPUTER VISION - ECCV 2022, PT XXX, 2022, 13690 : 177 - 194
  • [37] Source-Free Unsupervised Domain Adaptation with Sample Transport Learning
    Tian, Qing
    Ma, Chuang
    Zhang, Feng-Yuan
    Peng, Shun
    Xue, Hui
    JOURNAL OF COMPUTER SCIENCE AND TECHNOLOGY, 2021, 36 (03) : 606 - 616
  • [38] Uncertainty-aware pseudo-label filtering for source-free unsupervised domain adaptation
    Chen, Xi
    Yang, Haosen
    Zhang, Huicong
    Yao, Hongxun
    Zhu, Xiatian
    NEUROCOMPUTING, 2024, 575
  • [39] Reducing bias in source-free unsupervised domain adaptation for regression
    Zhan, Qianshan
    Zeng, Xiao-Jun
    Wang, Qian
    NEURAL NETWORKS, 2025, 185
  • [40] Adaptive Adversarial Network for Source-free Domain Adaptation
    Xia, Haifeng
    Zhao, Handong
    Ding, Zhengming
    2021 IEEE/CVF INTERNATIONAL CONFERENCE ON COMPUTER VISION (ICCV 2021), 2021, : 8990 - 8999